virtualx-engine/tests/core/math/test_basis.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

332 lines
14 KiB
C++
Raw Normal View History

2024-02-18 21:31:05 +01:00
/**************************************************************************/
/* test_basis.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef TEST_BASIS_H
#define TEST_BASIS_H
#include "core/math/basis.h"
#include "core/math/random_number_generator.h"
#include "tests/test_macros.h"
namespace TestBasis {
Vector3 deg_to_rad(const Vector3 &p_rotation) {
return p_rotation / 180.0 * Math_PI;
}
Vector3 rad2deg(const Vector3 &p_rotation) {
return p_rotation / Math_PI * 180.0;
}
String get_rot_order_name(EulerOrder ro) {
switch (ro) {
case EulerOrder::XYZ:
return "XYZ";
case EulerOrder::XZY:
return "XZY";
case EulerOrder::YZX:
return "YZX";
case EulerOrder::YXZ:
return "YXZ";
case EulerOrder::ZXY:
return "ZXY";
case EulerOrder::ZYX:
return "ZYX";
default:
return "[Not supported]";
}
}
void test_rotation(Vector3 deg_original_euler, EulerOrder rot_order) {
// This test:
// 1. Converts the rotation vector from deg to rad.
// 2. Converts euler to basis.
// 3. Converts the above basis back into euler.
// 4. Converts the above euler into basis again.
// 5. Compares the basis obtained in step 2 with the basis of step 4
//
// The conversion "basis to euler", done in the step 3, may be different from
// the original euler, even if the final rotation are the same.
// This happens because there are more ways to represents the same rotation,
// both valid, using eulers.
// For this reason is necessary to convert that euler back to basis and finally
// compares it.
//
// In this way we can assert that both functions: basis to euler / euler to basis
// are correct.
// Euler to rotation
const Vector3 original_euler = deg_to_rad(deg_original_euler);
const Basis to_rotation = Basis::from_euler(original_euler, rot_order);
// Euler from rotation
const Vector3 euler_from_rotation = to_rotation.get_euler(rot_order);
const Basis rotation_from_computed_euler = Basis::from_euler(euler_from_rotation, rot_order);
Basis res = to_rotation.inverse() * rotation_from_computed_euler;
CHECK_MESSAGE((res.get_column(0) - Vector3(1.0, 0.0, 0.0)).length() <= 0.1, vformat("Fail due to X %s\n", String(res.get_column(0))).utf8().ptr());
CHECK_MESSAGE((res.get_column(1) - Vector3(0.0, 1.0, 0.0)).length() <= 0.1, vformat("Fail due to Y %s\n", String(res.get_column(1))).utf8().ptr());
CHECK_MESSAGE((res.get_column(2) - Vector3(0.0, 0.0, 1.0)).length() <= 0.1, vformat("Fail due to Z %s\n", String(res.get_column(2))).utf8().ptr());
// Double check `to_rotation` decomposing with XYZ rotation order.
const Vector3 euler_xyz_from_rotation = to_rotation.get_euler(EulerOrder::XYZ);
Basis rotation_from_xyz_computed_euler = Basis::from_euler(euler_xyz_from_rotation, EulerOrder::XYZ);
res = to_rotation.inverse() * rotation_from_xyz_computed_euler;
CHECK_MESSAGE((res.get_column(0) - Vector3(1.0, 0.0, 0.0)).length() <= 0.1, vformat("Double check with XYZ rot order failed, due to X %s\n", String(res.get_column(0))).utf8().ptr());
CHECK_MESSAGE((res.get_column(1) - Vector3(0.0, 1.0, 0.0)).length() <= 0.1, vformat("Double check with XYZ rot order failed, due to Y %s\n", String(res.get_column(1))).utf8().ptr());
CHECK_MESSAGE((res.get_column(2) - Vector3(0.0, 0.0, 1.0)).length() <= 0.1, vformat("Double check with XYZ rot order failed, due to Z %s\n", String(res.get_column(2))).utf8().ptr());
INFO(vformat("Rotation order: %s\n.", get_rot_order_name(rot_order)).utf8().ptr());
INFO(vformat("Original Rotation: %s\n", String(deg_original_euler)).utf8().ptr());
INFO(vformat("Quaternion to rotation order: %s\n", String(rad2deg(euler_from_rotation))).utf8().ptr());
}
TEST_CASE("[Basis] Euler conversions") {
Vector<EulerOrder> euler_order_to_test;
euler_order_to_test.push_back(EulerOrder::XYZ);
euler_order_to_test.push_back(EulerOrder::XZY);
euler_order_to_test.push_back(EulerOrder::YZX);
euler_order_to_test.push_back(EulerOrder::YXZ);
euler_order_to_test.push_back(EulerOrder::ZXY);
euler_order_to_test.push_back(EulerOrder::ZYX);
Vector<Vector3> vectors_to_test;
// Test the special cases.
vectors_to_test.push_back(Vector3(0.0, 0.0, 0.0));
vectors_to_test.push_back(Vector3(0.5, 0.5, 0.5));
vectors_to_test.push_back(Vector3(-0.5, -0.5, -0.5));
vectors_to_test.push_back(Vector3(40.0, 40.0, 40.0));
vectors_to_test.push_back(Vector3(-40.0, -40.0, -40.0));
vectors_to_test.push_back(Vector3(0.0, 0.0, -90.0));
vectors_to_test.push_back(Vector3(0.0, -90.0, 0.0));
vectors_to_test.push_back(Vector3(-90.0, 0.0, 0.0));
vectors_to_test.push_back(Vector3(0.0, 0.0, 90.0));
vectors_to_test.push_back(Vector3(0.0, 90.0, 0.0));
vectors_to_test.push_back(Vector3(90.0, 0.0, 0.0));
vectors_to_test.push_back(Vector3(0.0, 0.0, -30.0));
vectors_to_test.push_back(Vector3(0.0, -30.0, 0.0));
vectors_to_test.push_back(Vector3(-30.0, 0.0, 0.0));
vectors_to_test.push_back(Vector3(0.0, 0.0, 30.0));
vectors_to_test.push_back(Vector3(0.0, 30.0, 0.0));
vectors_to_test.push_back(Vector3(30.0, 0.0, 0.0));
vectors_to_test.push_back(Vector3(0.5, 50.0, 20.0));
vectors_to_test.push_back(Vector3(-0.5, -50.0, -20.0));
vectors_to_test.push_back(Vector3(0.5, 0.0, 90.0));
vectors_to_test.push_back(Vector3(0.5, 0.0, -90.0));
vectors_to_test.push_back(Vector3(360.0, 360.0, 360.0));
vectors_to_test.push_back(Vector3(-360.0, -360.0, -360.0));
vectors_to_test.push_back(Vector3(-90.0, 60.0, -90.0));
vectors_to_test.push_back(Vector3(90.0, 60.0, -90.0));
vectors_to_test.push_back(Vector3(90.0, -60.0, -90.0));
vectors_to_test.push_back(Vector3(-90.0, -60.0, -90.0));
vectors_to_test.push_back(Vector3(-90.0, 60.0, 90.0));
vectors_to_test.push_back(Vector3(90.0, 60.0, 90.0));
vectors_to_test.push_back(Vector3(90.0, -60.0, 90.0));
vectors_to_test.push_back(Vector3(-90.0, -60.0, 90.0));
vectors_to_test.push_back(Vector3(60.0, 90.0, -40.0));
vectors_to_test.push_back(Vector3(60.0, -90.0, -40.0));
vectors_to_test.push_back(Vector3(-60.0, -90.0, -40.0));
vectors_to_test.push_back(Vector3(-60.0, 90.0, 40.0));
vectors_to_test.push_back(Vector3(60.0, 90.0, 40.0));
vectors_to_test.push_back(Vector3(60.0, -90.0, 40.0));
vectors_to_test.push_back(Vector3(-60.0, -90.0, 40.0));
vectors_to_test.push_back(Vector3(-90.0, 90.0, -90.0));
vectors_to_test.push_back(Vector3(90.0, 90.0, -90.0));
vectors_to_test.push_back(Vector3(90.0, -90.0, -90.0));
vectors_to_test.push_back(Vector3(-90.0, -90.0, -90.0));
vectors_to_test.push_back(Vector3(-90.0, 90.0, 90.0));
vectors_to_test.push_back(Vector3(90.0, 90.0, 90.0));
vectors_to_test.push_back(Vector3(90.0, -90.0, 90.0));
vectors_to_test.push_back(Vector3(20.0, 150.0, 30.0));
vectors_to_test.push_back(Vector3(20.0, -150.0, 30.0));
vectors_to_test.push_back(Vector3(-120.0, -150.0, 30.0));
vectors_to_test.push_back(Vector3(-120.0, -150.0, -130.0));
vectors_to_test.push_back(Vector3(120.0, -150.0, -130.0));
vectors_to_test.push_back(Vector3(120.0, 150.0, -130.0));
vectors_to_test.push_back(Vector3(120.0, 150.0, 130.0));
for (int h = 0; h < euler_order_to_test.size(); h += 1) {
for (int i = 0; i < vectors_to_test.size(); i += 1) {
test_rotation(vectors_to_test[i], euler_order_to_test[h]);
}
}
}
TEST_CASE("[Stress][Basis] Euler conversions") {
Vector<EulerOrder> euler_order_to_test;
euler_order_to_test.push_back(EulerOrder::XYZ);
euler_order_to_test.push_back(EulerOrder::XZY);
euler_order_to_test.push_back(EulerOrder::YZX);
euler_order_to_test.push_back(EulerOrder::YXZ);
euler_order_to_test.push_back(EulerOrder::ZXY);
euler_order_to_test.push_back(EulerOrder::ZYX);
Vector<Vector3> vectors_to_test;
// Add 1000 random vectors with weirds numbers.
RandomNumberGenerator rng;
for (int _ = 0; _ < 1000; _ += 1) {
vectors_to_test.push_back(Vector3(
rng.randf_range(-1800, 1800),
rng.randf_range(-1800, 1800),
rng.randf_range(-1800, 1800)));
}
for (int h = 0; h < euler_order_to_test.size(); h += 1) {
for (int i = 0; i < vectors_to_test.size(); i += 1) {
test_rotation(vectors_to_test[i], euler_order_to_test[h]);
}
}
}
TEST_CASE("[Basis] Set axis angle") {
Vector3 axis;
real_t angle;
real_t pi = (real_t)Math_PI;
// Testing the singularity when the angle is 0°.
Basis identity(1, 0, 0, 0, 1, 0, 0, 0, 1);
identity.get_axis_angle(axis, angle);
CHECK(angle == 0);
// Testing the singularity when the angle is 180°.
Basis singularityPi(-1, 0, 0, 0, 1, 0, 0, 0, -1);
singularityPi.get_axis_angle(axis, angle);
CHECK(angle == doctest::Approx(pi));
// Testing reversing the an axis (of an 30° angle).
float cos30deg = Math::cos(Math::deg_to_rad((real_t)30.0));
Basis z_positive(cos30deg, -0.5, 0, 0.5, cos30deg, 0, 0, 0, 1);
Basis z_negative(cos30deg, 0.5, 0, -0.5, cos30deg, 0, 0, 0, 1);
z_positive.get_axis_angle(axis, angle);
CHECK(angle == doctest::Approx(Math::deg_to_rad((real_t)30.0)));
CHECK(axis == Vector3(0, 0, 1));
z_negative.get_axis_angle(axis, angle);
CHECK(angle == doctest::Approx(Math::deg_to_rad((real_t)30.0)));
CHECK(axis == Vector3(0, 0, -1));
// Testing a rotation of 90° on x-y-z.
Basis x90deg(1, 0, 0, 0, 0, -1, 0, 1, 0);
x90deg.get_axis_angle(axis, angle);
CHECK(angle == doctest::Approx(pi / (real_t)2));
CHECK(axis == Vector3(1, 0, 0));
Basis y90deg(0, 0, 1, 0, 1, 0, -1, 0, 0);
y90deg.get_axis_angle(axis, angle);
CHECK(axis == Vector3(0, 1, 0));
Basis z90deg(0, -1, 0, 1, 0, 0, 0, 0, 1);
z90deg.get_axis_angle(axis, angle);
CHECK(axis == Vector3(0, 0, 1));
// Regression test: checks that the method returns a small angle (not 0).
Basis tiny(1, 0, 0, 0, 0.9999995, -0.001, 0, 001, 0.9999995); // The min angle possible with float is 0.001rad.
tiny.get_axis_angle(axis, angle);
CHECK(angle == doctest::Approx(0.001).epsilon(0.0001));
// Regression test: checks that the method returns an angle which is a number (not NaN)
Basis bugNan(1.00000024, 0, 0.000100001693, 0, 1, 0, -0.000100009143, 0, 1.00000024);
bugNan.get_axis_angle(axis, angle);
CHECK(!Math::is_nan(angle));
}
TEST_CASE("[Basis] Finite number checks") {
const Vector3 x(0, 1, 2);
const Vector3 infinite(NAN, NAN, NAN);
CHECK_MESSAGE(
Basis(x, x, x).is_finite(),
"Basis with all components finite should be finite");
CHECK_FALSE_MESSAGE(
Basis(infinite, x, x).is_finite(),
"Basis with one component infinite should not be finite.");
CHECK_FALSE_MESSAGE(
Basis(x, infinite, x).is_finite(),
"Basis with one component infinite should not be finite.");
CHECK_FALSE_MESSAGE(
Basis(x, x, infinite).is_finite(),
"Basis with one component infinite should not be finite.");
CHECK_FALSE_MESSAGE(
Basis(infinite, infinite, x).is_finite(),
"Basis with two components infinite should not be finite.");
CHECK_FALSE_MESSAGE(
Basis(infinite, x, infinite).is_finite(),
"Basis with two components infinite should not be finite.");
CHECK_FALSE_MESSAGE(
Basis(x, infinite, infinite).is_finite(),
"Basis with two components infinite should not be finite.");
CHECK_FALSE_MESSAGE(
Basis(infinite, infinite, infinite).is_finite(),
"Basis with three components infinite should not be finite.");
}
TEST_CASE("[Basis] Is conformal checks") {
CHECK_MESSAGE(
Basis().is_conformal(),
"Identity Basis should be conformal.");
CHECK_MESSAGE(
Basis::from_euler(Vector3(1.2, 3.4, 5.6)).is_conformal(),
"Basis with only rotation should be conformal.");
CHECK_MESSAGE(
Basis::from_scale(Vector3(-1, -1, -1)).is_conformal(),
"Basis with only a flip should be conformal.");
CHECK_MESSAGE(
Basis::from_scale(Vector3(1.2, 1.2, 1.2)).is_conformal(),
"Basis with only uniform scale should be conformal.");
CHECK_MESSAGE(
Basis(Vector3(3, 4, 0), Vector3(4, -3, 0.0), Vector3(0, 0, 5)).is_conformal(),
"Basis with a flip, rotation, and uniform scale should be conformal.");
CHECK_FALSE_MESSAGE(
Basis::from_scale(Vector3(1.2, 3.4, 5.6)).is_conformal(),
"Basis with non-uniform scale should not be conformal.");
CHECK_FALSE_MESSAGE(
Basis(Vector3(Math_SQRT12, Math_SQRT12, 0), Vector3(0, 1, 0), Vector3(0, 0, 1)).is_conformal(),
"Basis with the X axis skewed 45 degrees should not be conformal.");
}
} // namespace TestBasis
#endif // TEST_BASIS_H