virtualx-engine/modules/navigation/navigation_mesh_generator.cpp

687 lines
24 KiB
C++
Raw Normal View History

2017-02-28 13:10:29 +01:00
/*************************************************************************/
/* navigation_mesh_generator.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
2017-02-28 13:10:29 +01:00
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "core/math/convex_hull.h"
#ifndef _3D_DISABLED
#include "navigation_mesh_generator.h"
//#include "core/math/quick_hull.h"
//#include "core/math/convex_hull.h"
#include "core/os/thread.h"
#include "scene/3d/mesh_instance.h"
#include "scene/3d/multimesh_instance.h"
#include "scene/3d/physics_body.h"
#include "scene/resources/box_shape.h"
#include "scene/resources/capsule_shape.h"
#include "scene/resources/concave_polygon_shape.h"
#include "scene/resources/convex_polygon_shape.h"
#include "scene/resources/cylinder_shape.h"
#include "scene/resources/plane_shape.h"
#include "scene/resources/primitive_meshes.h"
#include "scene/resources/shape.h"
#include "scene/resources/sphere_shape.h"
#include "modules/modules_enabled.gen.h" // For csg, gridmap.
#ifdef TOOLS_ENABLED
#include "editor/editor_node.h"
#include "editor/editor_settings.h"
#endif
#ifdef MODULE_CSG_ENABLED
#include "modules/csg/csg_shape.h"
#endif
2019-08-18 12:03:29 +02:00
#ifdef MODULE_GRIDMAP_ENABLED
#include "modules/gridmap/grid_map.h"
#endif
NavigationMeshGenerator *NavigationMeshGenerator::singleton = NULL;
void NavigationMeshGenerator::_add_vertex(const Vector3 &p_vec3, Vector<float> &p_vertices) {
p_vertices.push_back(p_vec3.x);
p_vertices.push_back(p_vec3.y);
p_vertices.push_back(p_vec3.z);
2017-02-28 13:10:29 +01:00
}
void NavigationMeshGenerator::_add_mesh(const Ref<Mesh> &p_mesh, const Transform &p_xform, Vector<float> &p_vertices, Vector<int> &p_indices) {
int current_vertex_count;
2017-02-28 13:10:29 +01:00
for (int i = 0; i < p_mesh->get_surface_count(); i++) {
current_vertex_count = p_vertices.size() / 3;
if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) {
2017-02-28 13:10:29 +01:00
continue;
}
2017-02-28 13:10:29 +01:00
int index_count = 0;
if (p_mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) {
index_count = p_mesh->surface_get_array_index_len(i);
} else {
index_count = p_mesh->surface_get_array_len(i);
}
ERR_CONTINUE((index_count == 0 || (index_count % 3) != 0));
int face_count = index_count / 3;
Array a = p_mesh->surface_get_arrays(i);
PoolVector<Vector3> mesh_vertices = a[Mesh::ARRAY_VERTEX];
PoolVector<Vector3>::Read vr = mesh_vertices.read();
if (p_mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) {
PoolVector<int> mesh_indices = a[Mesh::ARRAY_INDEX];
PoolVector<int>::Read ir = mesh_indices.read();
for (int j = 0; j < mesh_vertices.size(); j++) {
_add_vertex(p_xform.xform(vr[j]), p_vertices);
2017-02-28 13:10:29 +01:00
}
for (int j = 0; j < face_count; j++) {
2017-02-28 13:10:29 +01:00
// CCW
p_indices.push_back(current_vertex_count + (ir[j * 3 + 0]));
p_indices.push_back(current_vertex_count + (ir[j * 3 + 2]));
p_indices.push_back(current_vertex_count + (ir[j * 3 + 1]));
2017-02-28 13:10:29 +01:00
}
} else {
face_count = mesh_vertices.size() / 3;
for (int j = 0; j < face_count; j++) {
_add_vertex(p_xform.xform(vr[j * 3 + 0]), p_vertices);
_add_vertex(p_xform.xform(vr[j * 3 + 2]), p_vertices);
_add_vertex(p_xform.xform(vr[j * 3 + 1]), p_vertices);
p_indices.push_back(current_vertex_count + (j * 3 + 0));
p_indices.push_back(current_vertex_count + (j * 3 + 1));
p_indices.push_back(current_vertex_count + (j * 3 + 2));
2017-02-28 13:10:29 +01:00
}
}
}
}
void NavigationMeshGenerator::_add_mesh_array(const Array &p_array, const Transform &p_xform, Vector<float> &p_vertices, Vector<int> &p_indices) {
PoolVector<Vector3> mesh_vertices = p_array[Mesh::ARRAY_VERTEX];
PoolVector<Vector3>::Read vr = mesh_vertices.read();
PoolVector<int> mesh_indices = p_array[Mesh::ARRAY_INDEX];
PoolVector<int>::Read ir = mesh_indices.read();
const int face_count = mesh_indices.size() / 3;
const int current_vertex_count = p_vertices.size() / 3;
for (int j = 0; j < mesh_vertices.size(); j++) {
_add_vertex(p_xform.xform(vr[j]), p_vertices);
}
for (int j = 0; j < face_count; j++) {
// CCW
p_indices.push_back(current_vertex_count + (ir[j * 3 + 0]));
p_indices.push_back(current_vertex_count + (ir[j * 3 + 2]));
p_indices.push_back(current_vertex_count + (ir[j * 3 + 1]));
}
}
void NavigationMeshGenerator::_add_faces(const PoolVector3Array &p_faces, const Transform &p_xform, Vector<float> &p_vertices, Vector<int> &p_indices) {
int face_count = p_faces.size() / 3;
int current_vertex_count = p_vertices.size() / 3;
for (int j = 0; j < face_count; j++) {
_add_vertex(p_xform.xform(p_faces[j * 3 + 0]), p_vertices);
_add_vertex(p_xform.xform(p_faces[j * 3 + 1]), p_vertices);
_add_vertex(p_xform.xform(p_faces[j * 3 + 2]), p_vertices);
p_indices.push_back(current_vertex_count + (j * 3 + 0));
p_indices.push_back(current_vertex_count + (j * 3 + 2));
p_indices.push_back(current_vertex_count + (j * 3 + 1));
}
}
void NavigationMeshGenerator::_parse_geometry(const Transform &p_navmesh_xform, Node *p_node, Vector<float> &p_vertices, Vector<int> &p_indices, int p_generate_from, uint32_t p_collision_mask, bool p_recurse_children) {
if (Object::cast_to<MeshInstance>(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS) {
2017-02-28 13:10:29 +01:00
MeshInstance *mesh_instance = Object::cast_to<MeshInstance>(p_node);
Ref<Mesh> mesh = mesh_instance->get_mesh();
if (mesh.is_valid()) {
_add_mesh(mesh, p_navmesh_xform * mesh_instance->get_global_transform(), p_vertices, p_indices);
}
}
if (Object::cast_to<MultiMeshInstance>(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS) {
MultiMeshInstance *multimesh_instance = Object::cast_to<MultiMeshInstance>(p_node);
Ref<MultiMesh> multimesh = multimesh_instance->get_multimesh();
Ref<Mesh> mesh = multimesh->get_mesh();
if (mesh.is_valid()) {
int n = multimesh->get_visible_instance_count();
if (n == -1) {
n = multimesh->get_instance_count();
}
for (int i = 0; i < n; i++) {
_add_mesh(mesh, p_navmesh_xform * multimesh_instance->get_global_transform() * multimesh->get_instance_transform(i), p_vertices, p_indices);
}
2017-02-28 13:10:29 +01:00
}
}
#ifdef MODULE_CSG_ENABLED
if (Object::cast_to<CSGShape>(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS) {
CSGShape *csg_shape = Object::cast_to<CSGShape>(p_node);
Array meshes = csg_shape->get_meshes();
if (!meshes.empty()) {
Ref<Mesh> mesh = meshes[1];
if (mesh.is_valid()) {
_add_mesh(mesh, p_navmesh_xform * csg_shape->get_global_transform(), p_vertices, p_indices);
}
}
}
#endif
if (Object::cast_to<StaticBody>(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_MESH_INSTANCES) {
StaticBody *static_body = Object::cast_to<StaticBody>(p_node);
if (static_body->get_collision_layer() & p_collision_mask) {
List<uint32_t> shape_owners;
static_body->get_shape_owners(&shape_owners);
for (List<uint32_t>::Element *E = shape_owners.front(); E; E = E->next()) {
uint32_t shape_owner = E->get();
const int shape_count = static_body->shape_owner_get_shape_count(shape_owner);
for (int i = 0; i < shape_count; i++) {
Ref<Shape> s = static_body->shape_owner_get_shape(shape_owner, i);
if (s.is_null()) {
continue;
}
const Transform transform = p_navmesh_xform * static_body->get_global_transform() * static_body->shape_owner_get_transform(shape_owner);
BoxShape *box = Object::cast_to<BoxShape>(*s);
if (box) {
Array arr;
arr.resize(VS::ARRAY_MAX);
CubeMesh::create_mesh_array(arr, box->get_extents() * 2.0);
_add_mesh_array(arr, transform, p_vertices, p_indices);
}
CapsuleShape *capsule = Object::cast_to<CapsuleShape>(*s);
if (capsule) {
Array arr;
arr.resize(VS::ARRAY_MAX);
CapsuleMesh::create_mesh_array(arr, capsule->get_radius(), capsule->get_height() / 2.0);
_add_mesh_array(arr, transform, p_vertices, p_indices);
}
CylinderShape *cylinder = Object::cast_to<CylinderShape>(*s);
if (cylinder) {
Array arr;
arr.resize(VS::ARRAY_MAX);
CylinderMesh::create_mesh_array(arr, cylinder->get_radius(), cylinder->get_radius(), cylinder->get_height());
_add_mesh_array(arr, transform, p_vertices, p_indices);
}
SphereShape *sphere = Object::cast_to<SphereShape>(*s);
if (sphere) {
Array arr;
arr.resize(VS::ARRAY_MAX);
SphereMesh::create_mesh_array(arr, sphere->get_radius(), sphere->get_radius() * 2.0);
_add_mesh_array(arr, transform, p_vertices, p_indices);
}
ConcavePolygonShape *concave_polygon = Object::cast_to<ConcavePolygonShape>(*s);
if (concave_polygon) {
_add_faces(concave_polygon->get_faces(), transform, p_vertices, p_indices);
}
ConvexPolygonShape *convex_polygon = Object::cast_to<ConvexPolygonShape>(*s);
if (convex_polygon) {
Vector<Vector3> varr = Variant(convex_polygon->get_points());
Geometry::MeshData md;
Error err = ConvexHullComputer::convex_hull(varr, md);
if (err == OK) {
PoolVector3Array faces;
for (int j = 0; j < md.faces.size(); ++j) {
Geometry::MeshData::Face face = md.faces[j];
for (int k = 2; k < face.indices.size(); ++k) {
faces.push_back(md.vertices[face.indices[0]]);
faces.push_back(md.vertices[face.indices[k - 1]]);
faces.push_back(md.vertices[face.indices[k]]);
}
}
_add_faces(faces, transform, p_vertices, p_indices);
}
}
}
}
}
}
2019-08-18 12:03:29 +02:00
#ifdef MODULE_GRIDMAP_ENABLED
GridMap *gridmap = Object::cast_to<GridMap>(p_node);
if (gridmap) {
if (p_generate_from != NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS) {
Array meshes = gridmap->get_meshes();
Transform xform = gridmap->get_global_transform();
for (int i = 0; i < meshes.size(); i += 2) {
Ref<Mesh> mesh = meshes[i + 1];
if (mesh.is_valid()) {
Transform mesh_xform = meshes[i];
_add_mesh(mesh, p_navmesh_xform * xform * mesh_xform, p_vertices, p_indices);
}
}
}
if (p_generate_from != NavigationMesh::PARSED_GEOMETRY_MESH_INSTANCES && (gridmap->get_collision_layer() & p_collision_mask)) {
Array shapes = gridmap->get_collision_shapes();
for (int i = 0; i < shapes.size(); i += 2) {
RID shape = shapes[i + 1];
PhysicsServer::ShapeType type = PhysicsServer::get_singleton()->shape_get_type(shape);
Variant data = PhysicsServer::get_singleton()->shape_get_data(shape);
switch (type) {
case PhysicsServer::SHAPE_SPHERE: {
real_t radius = data;
Array arr;
arr.resize(VS::ARRAY_MAX);
SphereMesh::create_mesh_array(arr, radius, radius * 2.0);
_add_mesh_array(arr, shapes[i], p_vertices, p_indices);
} break;
case PhysicsServer::SHAPE_BOX: {
Vector3 extents = data;
Array arr;
arr.resize(VS::ARRAY_MAX);
CubeMesh::create_mesh_array(arr, extents * 2.0);
_add_mesh_array(arr, shapes[i], p_vertices, p_indices);
} break;
case PhysicsServer::SHAPE_CAPSULE: {
Dictionary dict = data;
real_t radius = dict["radius"];
real_t height = dict["height"];
Array arr;
arr.resize(VS::ARRAY_MAX);
CapsuleMesh::create_mesh_array(arr, radius, height * 0.5);
_add_mesh_array(arr, shapes[i], p_vertices, p_indices);
} break;
case PhysicsServer::SHAPE_CYLINDER: {
Dictionary dict = data;
real_t radius = dict["radius"];
real_t height = dict["height"];
Array arr;
arr.resize(VS::ARRAY_MAX);
CylinderMesh::create_mesh_array(arr, radius, radius, height);
_add_mesh_array(arr, shapes[i], p_vertices, p_indices);
} break;
case PhysicsServer::SHAPE_CONVEX_POLYGON: {
PoolVector3Array vertices = data;
Geometry::MeshData md;
Error err = ConvexHullComputer::convex_hull(vertices, md);
if (err == OK) {
PoolVector3Array faces;
for (int j = 0; j < md.faces.size(); ++j) {
Geometry::MeshData::Face face = md.faces[j];
for (int k = 2; k < face.indices.size(); ++k) {
faces.push_back(md.vertices[face.indices[0]]);
faces.push_back(md.vertices[face.indices[k - 1]]);
faces.push_back(md.vertices[face.indices[k]]);
}
}
_add_faces(faces, shapes[i], p_vertices, p_indices);
}
} break;
case PhysicsServer::SHAPE_CONCAVE_POLYGON: {
PoolVector3Array faces = data;
_add_faces(faces, shapes[i], p_vertices, p_indices);
} break;
default: {
WARN_PRINT("Unsupported collision shape type.");
} break;
}
2019-08-18 12:03:29 +02:00
}
}
}
#endif
if (p_recurse_children) {
for (int i = 0; i < p_node->get_child_count(); i++) {
_parse_geometry(p_navmesh_xform, p_node->get_child(i), p_vertices, p_indices, p_generate_from, p_collision_mask, p_recurse_children);
}
2017-02-28 13:10:29 +01:00
}
}
void NavigationMeshGenerator::_convert_detail_mesh_to_native_navigation_mesh(const rcPolyMeshDetail *p_detail_mesh, Ref<NavigationMesh> p_nav_mesh) {
2017-02-28 13:10:29 +01:00
PoolVector<Vector3> nav_vertices;
for (int i = 0; i < p_detail_mesh->nverts; i++) {
const float *v = &p_detail_mesh->verts[i * 3];
nav_vertices.append(Vector3(v[0], v[1], v[2]));
}
p_nav_mesh->set_vertices(nav_vertices);
for (int i = 0; i < p_detail_mesh->nmeshes; i++) {
const unsigned int *m = &p_detail_mesh->meshes[i * 4];
const unsigned int bverts = m[0];
const unsigned int btris = m[2];
const unsigned int ntris = m[3];
const unsigned char *tris = &p_detail_mesh->tris[btris * 4];
for (unsigned int j = 0; j < ntris; j++) {
Vector<int> nav_indices;
nav_indices.resize(3);
// Polygon order in recast is opposite than godot's
nav_indices.write[0] = ((int)(bverts + tris[j * 4 + 0]));
nav_indices.write[1] = ((int)(bverts + tris[j * 4 + 2]));
nav_indices.write[2] = ((int)(bverts + tris[j * 4 + 1]));
2017-02-28 13:10:29 +01:00
p_nav_mesh->add_polygon(nav_indices);
}
}
}
void NavigationMeshGenerator::_build_recast_navigation_mesh(
Ref<NavigationMesh> p_nav_mesh,
#ifdef TOOLS_ENABLED
EditorProgress *ep,
#endif
rcHeightfield *hf,
rcCompactHeightfield *chf,
rcContourSet *cset,
rcPolyMesh *poly_mesh,
rcPolyMeshDetail *detail_mesh,
Vector<float> &vertices,
Vector<int> &indices) {
2017-02-28 13:10:29 +01:00
rcContext ctx;
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Setting up Configuration..."), 1);
#endif
2017-02-28 13:10:29 +01:00
const float *verts = vertices.ptr();
const int nverts = vertices.size() / 3;
2017-02-28 13:10:29 +01:00
const int *tris = indices.ptr();
const int ntris = indices.size() / 3;
float bmin[3], bmax[3];
rcCalcBounds(verts, nverts, bmin, bmax);
rcConfig cfg;
memset(&cfg, 0, sizeof(cfg));
cfg.cs = p_nav_mesh->get_cell_size();
cfg.ch = p_nav_mesh->get_cell_height();
cfg.walkableSlopeAngle = p_nav_mesh->get_agent_max_slope();
cfg.walkableHeight = (int)Math::ceil(p_nav_mesh->get_agent_height() / cfg.ch);
cfg.walkableClimb = (int)Math::floor(p_nav_mesh->get_agent_max_climb() / cfg.ch);
cfg.walkableRadius = (int)Math::ceil(p_nav_mesh->get_agent_radius() / cfg.cs);
cfg.maxEdgeLen = (int)(p_nav_mesh->get_edge_max_length() / p_nav_mesh->get_cell_size());
cfg.maxSimplificationError = p_nav_mesh->get_edge_max_error();
cfg.minRegionArea = (int)(p_nav_mesh->get_region_min_size() * p_nav_mesh->get_region_min_size());
cfg.mergeRegionArea = (int)(p_nav_mesh->get_region_merge_size() * p_nav_mesh->get_region_merge_size());
cfg.maxVertsPerPoly = (int)p_nav_mesh->get_verts_per_poly();
cfg.detailSampleDist = p_nav_mesh->get_detail_sample_distance() < 0.9f ? 0 : p_nav_mesh->get_cell_size() * p_nav_mesh->get_detail_sample_distance();
cfg.detailSampleMaxError = p_nav_mesh->get_cell_height() * p_nav_mesh->get_detail_sample_max_error();
cfg.bmin[0] = bmin[0];
cfg.bmin[1] = bmin[1];
cfg.bmin[2] = bmin[2];
cfg.bmax[0] = bmax[0];
cfg.bmax[1] = bmax[1];
cfg.bmax[2] = bmax[2];
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Calculating grid size..."), 2);
#endif
2017-02-28 13:10:29 +01:00
rcCalcGridSize(cfg.bmin, cfg.bmax, cfg.cs, &cfg.width, &cfg.height);
// ~30000000 seems to be around sweetspot where Editor baking breaks
if ((cfg.width * cfg.height) > 30000000) {
WARN_PRINT("NavigationMesh baking process will likely fail."
"\nSource geometry is suspiciously big for the current Cell Size and Cell Height in the NavMesh Resource bake settings."
"\nIf baking does not fail, the resulting NavigationMesh will create serious pathfinding performance issues."
"\nIt is advised to increase Cell Size and/or Cell Height in the NavMesh Resource bake settings or reduce the size / scale of the source geometry.");
}
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Creating heightfield..."), 3);
#endif
2017-02-28 13:10:29 +01:00
hf = rcAllocHeightfield();
ERR_FAIL_COND(!hf);
ERR_FAIL_COND(!rcCreateHeightfield(&ctx, *hf, cfg.width, cfg.height, cfg.bmin, cfg.bmax, cfg.cs, cfg.ch));
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Marking walkable triangles..."), 4);
#endif
2017-02-28 13:10:29 +01:00
{
Vector<unsigned char> tri_areas;
tri_areas.resize(ntris);
ERR_FAIL_COND(tri_areas.size() == 0);
memset(tri_areas.ptrw(), 0, ntris * sizeof(unsigned char));
rcMarkWalkableTriangles(&ctx, cfg.walkableSlopeAngle, verts, nverts, tris, ntris, tri_areas.ptrw());
2017-02-28 13:10:29 +01:00
ERR_FAIL_COND(!rcRasterizeTriangles(&ctx, verts, nverts, tris, tri_areas.ptr(), ntris, *hf, cfg.walkableClimb));
}
if (p_nav_mesh->get_filter_low_hanging_obstacles()) {
2017-02-28 13:10:29 +01:00
rcFilterLowHangingWalkableObstacles(&ctx, cfg.walkableClimb, *hf);
}
if (p_nav_mesh->get_filter_ledge_spans()) {
2017-02-28 13:10:29 +01:00
rcFilterLedgeSpans(&ctx, cfg.walkableHeight, cfg.walkableClimb, *hf);
}
if (p_nav_mesh->get_filter_walkable_low_height_spans()) {
2017-02-28 13:10:29 +01:00
rcFilterWalkableLowHeightSpans(&ctx, cfg.walkableHeight, *hf);
}
2017-02-28 13:10:29 +01:00
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Constructing compact heightfield..."), 5);
#endif
2017-02-28 13:10:29 +01:00
chf = rcAllocCompactHeightfield();
ERR_FAIL_COND(!chf);
ERR_FAIL_COND(!rcBuildCompactHeightfield(&ctx, cfg.walkableHeight, cfg.walkableClimb, *hf, *chf));
rcFreeHeightField(hf);
hf = 0;
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Eroding walkable area..."), 6);
#endif
2017-02-28 13:10:29 +01:00
ERR_FAIL_COND(!rcErodeWalkableArea(&ctx, cfg.walkableRadius, *chf));
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Partitioning..."), 7);
#endif
2017-02-28 13:10:29 +01:00
if (p_nav_mesh->get_sample_partition_type() == NavigationMesh::SAMPLE_PARTITION_WATERSHED) {
ERR_FAIL_COND(!rcBuildDistanceField(&ctx, *chf));
ERR_FAIL_COND(!rcBuildRegions(&ctx, *chf, 0, cfg.minRegionArea, cfg.mergeRegionArea));
} else if (p_nav_mesh->get_sample_partition_type() == NavigationMesh::SAMPLE_PARTITION_MONOTONE) {
ERR_FAIL_COND(!rcBuildRegionsMonotone(&ctx, *chf, 0, cfg.minRegionArea, cfg.mergeRegionArea));
} else {
ERR_FAIL_COND(!rcBuildLayerRegions(&ctx, *chf, 0, cfg.minRegionArea));
}
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Creating contours..."), 8);
#endif
2017-02-28 13:10:29 +01:00
cset = rcAllocContourSet();
ERR_FAIL_COND(!cset);
ERR_FAIL_COND(!rcBuildContours(&ctx, *chf, cfg.maxSimplificationError, cfg.maxEdgeLen, *cset));
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Creating polymesh..."), 9);
#endif
2017-02-28 13:10:29 +01:00
poly_mesh = rcAllocPolyMesh();
ERR_FAIL_COND(!poly_mesh);
ERR_FAIL_COND(!rcBuildPolyMesh(&ctx, *cset, cfg.maxVertsPerPoly, *poly_mesh));
detail_mesh = rcAllocPolyMeshDetail();
ERR_FAIL_COND(!detail_mesh);
ERR_FAIL_COND(!rcBuildPolyMeshDetail(&ctx, *poly_mesh, *chf, cfg.detailSampleDist, cfg.detailSampleMaxError, *detail_mesh));
rcFreeCompactHeightfield(chf);
chf = 0;
2017-02-28 13:10:29 +01:00
rcFreeContourSet(cset);
cset = 0;
2017-02-28 13:10:29 +01:00
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Converting to native navigation mesh..."), 10);
#endif
2017-02-28 13:10:29 +01:00
_convert_detail_mesh_to_native_navigation_mesh(detail_mesh, p_nav_mesh);
rcFreePolyMesh(poly_mesh);
poly_mesh = 0;
2017-02-28 13:10:29 +01:00
rcFreePolyMeshDetail(detail_mesh);
detail_mesh = 0;
2017-02-28 13:10:29 +01:00
}
NavigationMeshGenerator *NavigationMeshGenerator::get_singleton() {
return singleton;
}
NavigationMeshGenerator::NavigationMeshGenerator() {
singleton = this;
}
NavigationMeshGenerator::~NavigationMeshGenerator() {
}
void NavigationMeshGenerator::bake(Ref<NavigationMesh> p_nav_mesh, Node *p_node) {
ERR_FAIL_COND_MSG(!p_nav_mesh.is_valid(), "Invalid Navigation Mesh");
#ifdef TOOLS_ENABLED
EditorProgress *ep(NULL);
if (Engine::get_singleton()->is_editor_hint()) {
ep = memnew(EditorProgress("bake", TTR("Navigation Mesh Generator Setup:"), 11));
}
2017-02-28 13:10:29 +01:00
if (ep)
ep->step(TTR("Parsing Geometry..."), 0);
#endif
2017-02-28 13:10:29 +01:00
Vector<float> vertices;
2017-02-28 13:10:29 +01:00
Vector<int> indices;
List<Node *> parse_nodes;
if (p_nav_mesh->get_source_geometry_mode() == NavigationMesh::SOURCE_GEOMETRY_NAVMESH_CHILDREN) {
parse_nodes.push_back(p_node);
} else {
p_node->get_tree()->get_nodes_in_group(p_nav_mesh->get_source_group_name(), &parse_nodes);
}
Transform navmesh_xform = Object::cast_to<Spatial>(p_node)->get_global_transform().affine_inverse();
for (const List<Node *>::Element *E = parse_nodes.front(); E; E = E->next()) {
NavigationMesh::ParsedGeometryType geometry_type = p_nav_mesh->get_parsed_geometry_type();
uint32_t collision_mask = p_nav_mesh->get_collision_mask();
bool recurse_children = p_nav_mesh->get_source_geometry_mode() != NavigationMesh::SOURCE_GEOMETRY_GROUPS_EXPLICIT;
_parse_geometry(navmesh_xform, E->get(), vertices, indices, geometry_type, collision_mask, recurse_children);
}
2017-02-28 13:10:29 +01:00
if (vertices.size() > 0 && indices.size() > 0) {
rcHeightfield *hf = nullptr;
rcCompactHeightfield *chf = nullptr;
rcContourSet *cset = nullptr;
rcPolyMesh *poly_mesh = nullptr;
rcPolyMeshDetail *detail_mesh = nullptr;
2017-02-28 13:10:29 +01:00
_build_recast_navigation_mesh(
p_nav_mesh,
#ifdef TOOLS_ENABLED
ep,
#endif
hf,
chf,
cset,
poly_mesh,
detail_mesh,
vertices,
indices);
2017-02-28 13:10:29 +01:00
Fixes logically dead code (Coverity) Fixes reported logically dead codes by Coverity * image.cpp: Doesn't really need any modification. But to remove the bug report then we have to move the MAX call away from the for loop statement. * rasterizer_gles3.cpp: Removes unnecessary elif condition since it is checked earlier in the function * collada.cpp: If stamement never reached due to macro ERR_CONTINUE does the same. * navigation_mesh.cpp: Variables should always be null - however, also checked for the very same condition in their function call. Leaving this for review (whether the function call is necessary or not) * path_editor_plugin.cpp: If cancel is true, then it should restore the edited value to the original provided. http://docs.godotengine.org/en/3.0/classes/class_editorspatialgizmo.html#class-editorspatialgizmo-commit-handle * spatial_editor_gizmos.cpp: the very condition of i >= 3 is predetermined in the if case right before it. Thus case 1 is always '1' and case 2 is always '-1' * grid_map_editor.cpp: Same as above in spatial_editor_gizmos.cpp * voxel_light_baker.cpp: Same as above in spatial_editor_gizmos.cpp * visual_server.cpp: Same as above in spatial_editor_gizmos.cpp * visual_script_expression.cpp: char '-' is already true in the switch case mechanism. Thus it can never reach to default case. * particles.cpp: Case 'PARAM_MAX' is unreachable due to index checking right before the switch execution. * shader_language.cpp: Invalid index is handled in switch default case. `type < TYPE_FLOAT && type > TYPE_VEC4` -> `(type < TYPE_FLOAT || type > TYPE_VEC4`) Fixes the "always false problem" in TODO comment.
2018-04-21 16:35:23 +02:00
rcFreeHeightField(hf);
hf = 0;
Fixes logically dead code (Coverity) Fixes reported logically dead codes by Coverity * image.cpp: Doesn't really need any modification. But to remove the bug report then we have to move the MAX call away from the for loop statement. * rasterizer_gles3.cpp: Removes unnecessary elif condition since it is checked earlier in the function * collada.cpp: If stamement never reached due to macro ERR_CONTINUE does the same. * navigation_mesh.cpp: Variables should always be null - however, also checked for the very same condition in their function call. Leaving this for review (whether the function call is necessary or not) * path_editor_plugin.cpp: If cancel is true, then it should restore the edited value to the original provided. http://docs.godotengine.org/en/3.0/classes/class_editorspatialgizmo.html#class-editorspatialgizmo-commit-handle * spatial_editor_gizmos.cpp: the very condition of i >= 3 is predetermined in the if case right before it. Thus case 1 is always '1' and case 2 is always '-1' * grid_map_editor.cpp: Same as above in spatial_editor_gizmos.cpp * voxel_light_baker.cpp: Same as above in spatial_editor_gizmos.cpp * visual_server.cpp: Same as above in spatial_editor_gizmos.cpp * visual_script_expression.cpp: char '-' is already true in the switch case mechanism. Thus it can never reach to default case. * particles.cpp: Case 'PARAM_MAX' is unreachable due to index checking right before the switch execution. * shader_language.cpp: Invalid index is handled in switch default case. `type < TYPE_FLOAT && type > TYPE_VEC4` -> `(type < TYPE_FLOAT || type > TYPE_VEC4`) Fixes the "always false problem" in TODO comment.
2018-04-21 16:35:23 +02:00
rcFreeCompactHeightfield(chf);
chf = 0;
Fixes logically dead code (Coverity) Fixes reported logically dead codes by Coverity * image.cpp: Doesn't really need any modification. But to remove the bug report then we have to move the MAX call away from the for loop statement. * rasterizer_gles3.cpp: Removes unnecessary elif condition since it is checked earlier in the function * collada.cpp: If stamement never reached due to macro ERR_CONTINUE does the same. * navigation_mesh.cpp: Variables should always be null - however, also checked for the very same condition in their function call. Leaving this for review (whether the function call is necessary or not) * path_editor_plugin.cpp: If cancel is true, then it should restore the edited value to the original provided. http://docs.godotengine.org/en/3.0/classes/class_editorspatialgizmo.html#class-editorspatialgizmo-commit-handle * spatial_editor_gizmos.cpp: the very condition of i >= 3 is predetermined in the if case right before it. Thus case 1 is always '1' and case 2 is always '-1' * grid_map_editor.cpp: Same as above in spatial_editor_gizmos.cpp * voxel_light_baker.cpp: Same as above in spatial_editor_gizmos.cpp * visual_server.cpp: Same as above in spatial_editor_gizmos.cpp * visual_script_expression.cpp: char '-' is already true in the switch case mechanism. Thus it can never reach to default case. * particles.cpp: Case 'PARAM_MAX' is unreachable due to index checking right before the switch execution. * shader_language.cpp: Invalid index is handled in switch default case. `type < TYPE_FLOAT && type > TYPE_VEC4` -> `(type < TYPE_FLOAT || type > TYPE_VEC4`) Fixes the "always false problem" in TODO comment.
2018-04-21 16:35:23 +02:00
rcFreeContourSet(cset);
cset = 0;
Fixes logically dead code (Coverity) Fixes reported logically dead codes by Coverity * image.cpp: Doesn't really need any modification. But to remove the bug report then we have to move the MAX call away from the for loop statement. * rasterizer_gles3.cpp: Removes unnecessary elif condition since it is checked earlier in the function * collada.cpp: If stamement never reached due to macro ERR_CONTINUE does the same. * navigation_mesh.cpp: Variables should always be null - however, also checked for the very same condition in their function call. Leaving this for review (whether the function call is necessary or not) * path_editor_plugin.cpp: If cancel is true, then it should restore the edited value to the original provided. http://docs.godotengine.org/en/3.0/classes/class_editorspatialgizmo.html#class-editorspatialgizmo-commit-handle * spatial_editor_gizmos.cpp: the very condition of i >= 3 is predetermined in the if case right before it. Thus case 1 is always '1' and case 2 is always '-1' * grid_map_editor.cpp: Same as above in spatial_editor_gizmos.cpp * voxel_light_baker.cpp: Same as above in spatial_editor_gizmos.cpp * visual_server.cpp: Same as above in spatial_editor_gizmos.cpp * visual_script_expression.cpp: char '-' is already true in the switch case mechanism. Thus it can never reach to default case. * particles.cpp: Case 'PARAM_MAX' is unreachable due to index checking right before the switch execution. * shader_language.cpp: Invalid index is handled in switch default case. `type < TYPE_FLOAT && type > TYPE_VEC4` -> `(type < TYPE_FLOAT || type > TYPE_VEC4`) Fixes the "always false problem" in TODO comment.
2018-04-21 16:35:23 +02:00
rcFreePolyMesh(poly_mesh);
poly_mesh = 0;
Fixes logically dead code (Coverity) Fixes reported logically dead codes by Coverity * image.cpp: Doesn't really need any modification. But to remove the bug report then we have to move the MAX call away from the for loop statement. * rasterizer_gles3.cpp: Removes unnecessary elif condition since it is checked earlier in the function * collada.cpp: If stamement never reached due to macro ERR_CONTINUE does the same. * navigation_mesh.cpp: Variables should always be null - however, also checked for the very same condition in their function call. Leaving this for review (whether the function call is necessary or not) * path_editor_plugin.cpp: If cancel is true, then it should restore the edited value to the original provided. http://docs.godotengine.org/en/3.0/classes/class_editorspatialgizmo.html#class-editorspatialgizmo-commit-handle * spatial_editor_gizmos.cpp: the very condition of i >= 3 is predetermined in the if case right before it. Thus case 1 is always '1' and case 2 is always '-1' * grid_map_editor.cpp: Same as above in spatial_editor_gizmos.cpp * voxel_light_baker.cpp: Same as above in spatial_editor_gizmos.cpp * visual_server.cpp: Same as above in spatial_editor_gizmos.cpp * visual_script_expression.cpp: char '-' is already true in the switch case mechanism. Thus it can never reach to default case. * particles.cpp: Case 'PARAM_MAX' is unreachable due to index checking right before the switch execution. * shader_language.cpp: Invalid index is handled in switch default case. `type < TYPE_FLOAT && type > TYPE_VEC4` -> `(type < TYPE_FLOAT || type > TYPE_VEC4`) Fixes the "always false problem" in TODO comment.
2018-04-21 16:35:23 +02:00
rcFreePolyMeshDetail(detail_mesh);
detail_mesh = 0;
2017-02-28 13:10:29 +01:00
}
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Done!"), 11);
if (ep)
memdelete(ep);
#endif
p_nav_mesh->property_list_changed_notify();
2017-02-28 13:10:29 +01:00
}
void NavigationMeshGenerator::clear(Ref<NavigationMesh> p_nav_mesh) {
2017-02-28 13:10:29 +01:00
if (p_nav_mesh.is_valid()) {
p_nav_mesh->clear_polygons();
p_nav_mesh->set_vertices(PoolVector<Vector3>());
}
}
void NavigationMeshGenerator::_bind_methods() {
ClassDB::bind_method(D_METHOD("bake", "nav_mesh", "root_node"), &NavigationMeshGenerator::bake);
ClassDB::bind_method(D_METHOD("clear", "nav_mesh"), &NavigationMeshGenerator::clear);
}
#endif