virtualx-engine/modules/csg/csg_shape.cpp

2306 lines
66 KiB
C++
Raw Normal View History

2018-05-16 19:19:33 +02:00
/*************************************************************************/
/* csg_shape.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
2018-05-16 19:19:33 +02:00
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "csg_shape.h"
void CSGShape::set_use_collision(bool p_enable) {
if (use_collision == p_enable) {
return;
}
use_collision = p_enable;
if (!is_inside_tree() || !is_root_shape()) {
return;
}
if (use_collision) {
root_collision_shape.instance();
root_collision_instance = PhysicsServer::get_singleton()->body_create(PhysicsServer::BODY_MODE_STATIC);
PhysicsServer::get_singleton()->body_set_state(root_collision_instance, PhysicsServer::BODY_STATE_TRANSFORM, get_global_transform());
PhysicsServer::get_singleton()->body_add_shape(root_collision_instance, root_collision_shape->get_rid());
PhysicsServer::get_singleton()->body_set_space(root_collision_instance, get_world()->get_space());
PhysicsServer::get_singleton()->body_attach_object_instance_id(root_collision_instance, get_instance_id());
set_collision_layer(collision_layer);
set_collision_mask(collision_mask);
_make_dirty(); //force update
} else {
PhysicsServer::get_singleton()->free(root_collision_instance);
root_collision_instance = RID();
root_collision_shape.unref();
}
_change_notify();
}
bool CSGShape::is_using_collision() const {
return use_collision;
}
void CSGShape::set_collision_layer(uint32_t p_layer) {
collision_layer = p_layer;
if (root_collision_instance.is_valid()) {
PhysicsServer::get_singleton()->body_set_collision_layer(root_collision_instance, p_layer);
}
}
uint32_t CSGShape::get_collision_layer() const {
return collision_layer;
}
void CSGShape::set_collision_mask(uint32_t p_mask) {
collision_mask = p_mask;
if (root_collision_instance.is_valid()) {
PhysicsServer::get_singleton()->body_set_collision_mask(root_collision_instance, p_mask);
}
}
uint32_t CSGShape::get_collision_mask() const {
return collision_mask;
}
void CSGShape::set_collision_mask_bit(int p_bit, bool p_value) {
ERR_FAIL_INDEX_MSG(p_bit, 32, "Collision mask bit must be between 0 and 31 inclusive.");
uint32_t mask = get_collision_mask();
if (p_value) {
mask |= 1 << p_bit;
} else {
mask &= ~(1 << p_bit);
}
set_collision_mask(mask);
}
bool CSGShape::get_collision_mask_bit(int p_bit) const {
ERR_FAIL_INDEX_V_MSG(p_bit, 32, false, "Collision mask bit must be between 0 and 31 inclusive.");
return get_collision_mask() & (1 << p_bit);
}
void CSGShape::set_collision_layer_bit(int p_bit, bool p_value) {
ERR_FAIL_INDEX_MSG(p_bit, 32, "Collision layer bit must be between 0 and 31 inclusive.");
uint32_t layer = get_collision_layer();
if (p_value) {
layer |= 1 << p_bit;
} else {
layer &= ~(1 << p_bit);
}
set_collision_layer(layer);
}
bool CSGShape::get_collision_layer_bit(int p_bit) const {
ERR_FAIL_INDEX_V_MSG(p_bit, 32, false, "Collision layer bit must be between 0 and 31 inclusive.");
return get_collision_layer() & (1 << p_bit);
}
bool CSGShape::is_root_shape() const {
return !parent;
}
void CSGShape::set_snap(float p_snap) {
snap = p_snap;
}
float CSGShape::get_snap() const {
return snap;
}
void CSGShape::_make_dirty() {
if (!is_inside_tree()) {
return;
}
if (parent) {
parent->_make_dirty();
} else if (!dirty) {
call_deferred("_update_shape");
}
dirty = true;
}
CSGBrush *CSGShape::_get_brush() {
if (dirty) {
if (brush) {
memdelete(brush);
}
brush = nullptr;
CSGBrush *n = _build_brush();
for (int i = 0; i < get_child_count(); i++) {
CSGShape *child = Object::cast_to<CSGShape>(get_child(i));
if (!child) {
continue;
}
if (!child->is_visible_in_tree()) {
continue;
}
CSGBrush *n2 = child->_get_brush();
if (!n2) {
continue;
}
if (!n) {
n = memnew(CSGBrush);
n->copy_from(*n2, child->get_transform());
} else {
CSGBrush *nn = memnew(CSGBrush);
CSGBrush *nn2 = memnew(CSGBrush);
nn2->copy_from(*n2, child->get_transform());
CSGBrushOperation bop;
switch (child->get_operation()) {
case CSGShape::OPERATION_UNION:
bop.merge_brushes(CSGBrushOperation::OPERATION_UNION, *n, *nn2, *nn, snap);
break;
case CSGShape::OPERATION_INTERSECTION:
bop.merge_brushes(CSGBrushOperation::OPERATION_INTERSECTION, *n, *nn2, *nn, snap);
break;
case CSGShape::OPERATION_SUBTRACTION:
bop.merge_brushes(CSGBrushOperation::OPERATION_SUBSTRACTION, *n, *nn2, *nn, snap);
break;
}
memdelete(n);
memdelete(nn2);
n = nn;
}
}
if (n) {
AABB aabb;
for (int i = 0; i < n->faces.size(); i++) {
for (int j = 0; j < 3; j++) {
if (i == 0 && j == 0) {
aabb.position = n->faces[i].vertices[j];
} else {
aabb.expand_to(n->faces[i].vertices[j]);
}
}
}
node_aabb = aabb;
} else {
node_aabb = AABB();
}
brush = n;
dirty = false;
}
return brush;
}
int CSGShape::mikktGetNumFaces(const SMikkTSpaceContext *pContext) {
ShapeUpdateSurface &surface = *((ShapeUpdateSurface *)pContext->m_pUserData);
return surface.vertices.size() / 3;
}
int CSGShape::mikktGetNumVerticesOfFace(const SMikkTSpaceContext *pContext, const int iFace) {
// always 3
return 3;
}
void CSGShape::mikktGetPosition(const SMikkTSpaceContext *pContext, float fvPosOut[], const int iFace, const int iVert) {
ShapeUpdateSurface &surface = *((ShapeUpdateSurface *)pContext->m_pUserData);
Vector3 v = surface.verticesw[iFace * 3 + iVert];
fvPosOut[0] = v.x;
fvPosOut[1] = v.y;
fvPosOut[2] = v.z;
}
void CSGShape::mikktGetNormal(const SMikkTSpaceContext *pContext, float fvNormOut[], const int iFace, const int iVert) {
ShapeUpdateSurface &surface = *((ShapeUpdateSurface *)pContext->m_pUserData);
Vector3 n = surface.normalsw[iFace * 3 + iVert];
fvNormOut[0] = n.x;
fvNormOut[1] = n.y;
fvNormOut[2] = n.z;
}
void CSGShape::mikktGetTexCoord(const SMikkTSpaceContext *pContext, float fvTexcOut[], const int iFace, const int iVert) {
ShapeUpdateSurface &surface = *((ShapeUpdateSurface *)pContext->m_pUserData);
Vector2 t = surface.uvsw[iFace * 3 + iVert];
fvTexcOut[0] = t.x;
fvTexcOut[1] = t.y;
}
void CSGShape::mikktSetTSpaceDefault(const SMikkTSpaceContext *pContext, const float fvTangent[], const float fvBiTangent[], const float fMagS, const float fMagT,
const tbool bIsOrientationPreserving, const int iFace, const int iVert) {
ShapeUpdateSurface &surface = *((ShapeUpdateSurface *)pContext->m_pUserData);
int i = iFace * 3 + iVert;
Vector3 normal = surface.normalsw[i];
Vector3 tangent = Vector3(fvTangent[0], fvTangent[1], fvTangent[2]);
Vector3 bitangent = Vector3(-fvBiTangent[0], -fvBiTangent[1], -fvBiTangent[2]); // for some reason these are reversed, something with the coordinate system in Godot
float d = bitangent.dot(normal.cross(tangent));
i *= 4;
2018-11-17 02:11:35 +01:00
surface.tansw[i++] = tangent.x;
surface.tansw[i++] = tangent.y;
surface.tansw[i++] = tangent.z;
surface.tansw[i++] = d < 0 ? -1 : 1;
}
void CSGShape::_update_shape() {
if (parent || !is_inside_tree()) {
return;
}
set_base(RID());
root_mesh.unref(); //byebye root mesh
CSGBrush *n = _get_brush();
2019-09-25 10:28:50 +02:00
ERR_FAIL_COND_MSG(!n, "Cannot get CSGBrush.");
OAHashMap<Vector3, Vector3> vec_map;
Vector<int> face_count;
face_count.resize(n->materials.size() + 1);
for (int i = 0; i < face_count.size(); i++) {
face_count.write[i] = 0;
}
for (int i = 0; i < n->faces.size(); i++) {
int mat = n->faces[i].material;
ERR_CONTINUE(mat < -1 || mat >= face_count.size());
int idx = mat == -1 ? face_count.size() - 1 : mat;
Plane p(n->faces[i].vertices[0], n->faces[i].vertices[1], n->faces[i].vertices[2]);
for (int j = 0; j < 3; j++) {
Vector3 v = n->faces[i].vertices[j];
Vector3 add;
if (vec_map.lookup(v, add)) {
add += p.normal;
} else {
add = p.normal;
}
vec_map.set(v, add);
}
face_count.write[idx]++;
}
Vector<ShapeUpdateSurface> surfaces;
surfaces.resize(face_count.size());
//create arrays
for (int i = 0; i < surfaces.size(); i++) {
surfaces.write[i].vertices.resize(face_count[i] * 3);
surfaces.write[i].normals.resize(face_count[i] * 3);
surfaces.write[i].uvs.resize(face_count[i] * 3);
if (calculate_tangents) {
surfaces.write[i].tans.resize(face_count[i] * 3 * 4);
}
surfaces.write[i].last_added = 0;
if (i != surfaces.size() - 1) {
surfaces.write[i].material = n->materials[i];
}
surfaces.write[i].verticesw = surfaces.write[i].vertices.write();
surfaces.write[i].normalsw = surfaces.write[i].normals.write();
surfaces.write[i].uvsw = surfaces.write[i].uvs.write();
if (calculate_tangents) {
surfaces.write[i].tansw = surfaces.write[i].tans.write();
}
}
// Update collision faces.
if (root_collision_shape.is_valid()) {
PoolVector<Vector3> physics_faces;
physics_faces.resize(n->faces.size() * 3);
PoolVector<Vector3>::Write physicsw = physics_faces.write();
for (int i = 0; i < n->faces.size(); i++) {
int order[3] = { 0, 1, 2 };
if (n->faces[i].invert) {
SWAP(order[1], order[2]);
}
physicsw[i * 3 + 0] = n->faces[i].vertices[order[0]];
physicsw[i * 3 + 1] = n->faces[i].vertices[order[1]];
physicsw[i * 3 + 2] = n->faces[i].vertices[order[2]];
}
root_collision_shape->set_faces(physics_faces);
}
//fill arrays
{
for (int i = 0; i < n->faces.size(); i++) {
int order[3] = { 0, 1, 2 };
if (n->faces[i].invert) {
SWAP(order[1], order[2]);
}
int mat = n->faces[i].material;
ERR_CONTINUE(mat < -1 || mat >= face_count.size());
int idx = mat == -1 ? face_count.size() - 1 : mat;
int last = surfaces[idx].last_added;
Plane p(n->faces[i].vertices[0], n->faces[i].vertices[1], n->faces[i].vertices[2]);
for (int j = 0; j < 3; j++) {
Vector3 v = n->faces[i].vertices[j];
Vector3 normal = p.normal;
if (n->faces[i].smooth && vec_map.lookup(v, normal)) {
normal.normalize();
}
if (n->faces[i].invert) {
normal = -normal;
}
int k = last + order[j];
surfaces[idx].verticesw[k] = v;
surfaces[idx].uvsw[k] = n->faces[i].uvs[j];
surfaces[idx].normalsw[k] = normal;
if (calculate_tangents) {
// zero out our tangents for now
k *= 4;
surfaces[idx].tansw[k++] = 0.0;
surfaces[idx].tansw[k++] = 0.0;
surfaces[idx].tansw[k++] = 0.0;
surfaces[idx].tansw[k++] = 0.0;
}
}
surfaces.write[idx].last_added += 3;
}
}
root_mesh.instance();
//create surfaces
for (int i = 0; i < surfaces.size(); i++) {
// calculate tangents for this surface
bool have_tangents = calculate_tangents;
if (have_tangents) {
SMikkTSpaceInterface mkif;
mkif.m_getNormal = mikktGetNormal;
mkif.m_getNumFaces = mikktGetNumFaces;
mkif.m_getNumVerticesOfFace = mikktGetNumVerticesOfFace;
mkif.m_getPosition = mikktGetPosition;
mkif.m_getTexCoord = mikktGetTexCoord;
mkif.m_setTSpace = mikktSetTSpaceDefault;
mkif.m_setTSpaceBasic = nullptr;
SMikkTSpaceContext msc;
msc.m_pInterface = &mkif;
msc.m_pUserData = &surfaces.write[i];
have_tangents = genTangSpaceDefault(&msc);
}
// unset write access
surfaces.write[i].verticesw.release();
surfaces.write[i].normalsw.release();
surfaces.write[i].uvsw.release();
surfaces.write[i].tansw.release();
if (surfaces[i].last_added == 0) {
continue;
}
// and convert to surface array
Array array;
array.resize(Mesh::ARRAY_MAX);
array[Mesh::ARRAY_VERTEX] = surfaces[i].vertices;
array[Mesh::ARRAY_NORMAL] = surfaces[i].normals;
array[Mesh::ARRAY_TEX_UV] = surfaces[i].uvs;
if (have_tangents) {
array[Mesh::ARRAY_TANGENT] = surfaces[i].tans;
}
int idx = root_mesh->get_surface_count();
root_mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, array);
root_mesh->surface_set_material(idx, surfaces[i].material);
}
set_base(root_mesh->get_rid());
}
AABB CSGShape::get_aabb() const {
return node_aabb;
}
PoolVector<Vector3> CSGShape::get_brush_faces() {
ERR_FAIL_COND_V(!is_inside_tree(), PoolVector<Vector3>());
CSGBrush *b = _get_brush();
2018-04-28 13:53:27 +02:00
if (!b) {
return PoolVector<Vector3>();
}
PoolVector<Vector3> faces;
int fc = b->faces.size();
faces.resize(fc * 3);
{
PoolVector<Vector3>::Write w = faces.write();
for (int i = 0; i < fc; i++) {
w[i * 3 + 0] = b->faces[i].vertices[0];
w[i * 3 + 1] = b->faces[i].vertices[1];
w[i * 3 + 2] = b->faces[i].vertices[2];
}
}
return faces;
}
PoolVector<Face3> CSGShape::get_faces(uint32_t p_usage_flags) const {
return PoolVector<Face3>();
}
void CSGShape::_notification(int p_what) {
if (p_what == NOTIFICATION_ENTER_TREE) {
Node *parentn = get_parent();
if (parentn) {
parent = Object::cast_to<CSGShape>(parentn);
if (parent) {
set_base(RID());
root_mesh.unref();
}
}
if (use_collision && is_root_shape()) {
root_collision_shape.instance();
root_collision_instance = PhysicsServer::get_singleton()->body_create(PhysicsServer::BODY_MODE_STATIC);
PhysicsServer::get_singleton()->body_set_state(root_collision_instance, PhysicsServer::BODY_STATE_TRANSFORM, get_global_transform());
PhysicsServer::get_singleton()->body_add_shape(root_collision_instance, root_collision_shape->get_rid());
PhysicsServer::get_singleton()->body_set_space(root_collision_instance, get_world()->get_space());
PhysicsServer::get_singleton()->body_attach_object_instance_id(root_collision_instance, get_instance_id());
set_collision_layer(collision_layer);
set_collision_mask(collision_mask);
}
_make_dirty();
}
if (p_what == NOTIFICATION_TRANSFORM_CHANGED) {
if (use_collision && is_root_shape() && root_collision_instance.is_valid()) {
PhysicsServer::get_singleton()->body_set_state(root_collision_instance, PhysicsServer::BODY_STATE_TRANSFORM, get_global_transform());
}
}
if (p_what == NOTIFICATION_LOCAL_TRANSFORM_CHANGED) {
if (parent) {
parent->_make_dirty();
}
}
if (p_what == NOTIFICATION_VISIBILITY_CHANGED) {
if (parent) {
parent->_make_dirty();
}
}
if (p_what == NOTIFICATION_EXIT_TREE) {
if (parent) {
parent->_make_dirty();
}
parent = nullptr;
if (use_collision && is_root_shape() && root_collision_instance.is_valid()) {
PhysicsServer::get_singleton()->free(root_collision_instance);
root_collision_instance = RID();
root_collision_shape.unref();
}
_make_dirty();
}
}
void CSGShape::set_operation(Operation p_operation) {
operation = p_operation;
_make_dirty();
update_gizmo();
}
CSGShape::Operation CSGShape::get_operation() const {
return operation;
}
void CSGShape::set_calculate_tangents(bool p_calculate_tangents) {
calculate_tangents = p_calculate_tangents;
_make_dirty();
}
bool CSGShape::is_calculating_tangents() const {
return calculate_tangents;
}
void CSGShape::_validate_property(PropertyInfo &property) const {
bool is_collision_prefixed = property.name.begins_with("collision_");
if ((is_collision_prefixed || property.name.begins_with("use_collision")) && is_inside_tree() && !is_root_shape()) {
//hide collision if not root
property.usage = PROPERTY_USAGE_NOEDITOR;
} else if (is_collision_prefixed && !bool(get("use_collision"))) {
property.usage = PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL;
}
}
// Calling _make_dirty() normally calls a deferred _update_shape.
// This is problematic if we need to read the geometry immediately.
// This function provides a means to make sure the shape is updated
// immediately. It should only be used where necessary to prevent
// updating CSGs multiple times per frame. Use _make_dirty in preference.
void CSGShape::force_update_shape() {
if (dirty) {
_update_shape();
}
}
Array CSGShape::get_meshes() const {
if (root_mesh.is_valid()) {
Array arr;
arr.resize(2);
arr[0] = Transform();
arr[1] = root_mesh;
return arr;
}
return Array();
}
void CSGShape::_bind_methods() {
ClassDB::bind_method(D_METHOD("_update_shape"), &CSGShape::_update_shape);
ClassDB::bind_method(D_METHOD("is_root_shape"), &CSGShape::is_root_shape);
ClassDB::bind_method(D_METHOD("set_operation", "operation"), &CSGShape::set_operation);
ClassDB::bind_method(D_METHOD("get_operation"), &CSGShape::get_operation);
ClassDB::bind_method(D_METHOD("set_snap", "snap"), &CSGShape::set_snap);
ClassDB::bind_method(D_METHOD("get_snap"), &CSGShape::get_snap);
ClassDB::bind_method(D_METHOD("set_use_collision", "operation"), &CSGShape::set_use_collision);
ClassDB::bind_method(D_METHOD("is_using_collision"), &CSGShape::is_using_collision);
ClassDB::bind_method(D_METHOD("set_collision_layer", "layer"), &CSGShape::set_collision_layer);
ClassDB::bind_method(D_METHOD("get_collision_layer"), &CSGShape::get_collision_layer);
ClassDB::bind_method(D_METHOD("set_collision_mask", "mask"), &CSGShape::set_collision_mask);
ClassDB::bind_method(D_METHOD("get_collision_mask"), &CSGShape::get_collision_mask);
ClassDB::bind_method(D_METHOD("set_collision_mask_bit", "bit", "value"), &CSGShape::set_collision_mask_bit);
ClassDB::bind_method(D_METHOD("get_collision_mask_bit", "bit"), &CSGShape::get_collision_mask_bit);
ClassDB::bind_method(D_METHOD("set_collision_layer_bit", "bit", "value"), &CSGShape::set_collision_layer_bit);
ClassDB::bind_method(D_METHOD("get_collision_layer_bit", "bit"), &CSGShape::get_collision_layer_bit);
ClassDB::bind_method(D_METHOD("set_calculate_tangents", "enabled"), &CSGShape::set_calculate_tangents);
ClassDB::bind_method(D_METHOD("is_calculating_tangents"), &CSGShape::is_calculating_tangents);
ClassDB::bind_method(D_METHOD("get_meshes"), &CSGShape::get_meshes);
ADD_PROPERTY(PropertyInfo(Variant::INT, "operation", PROPERTY_HINT_ENUM, "Union,Intersection,Subtraction"), "set_operation", "get_operation");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "snap", PROPERTY_HINT_RANGE, "0.0001,1,0.001"), "set_snap", "get_snap");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "calculate_tangents"), "set_calculate_tangents", "is_calculating_tangents");
ADD_GROUP("Collision", "collision_");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "use_collision"), "set_use_collision", "is_using_collision");
ADD_PROPERTY(PropertyInfo(Variant::INT, "collision_layer", PROPERTY_HINT_LAYERS_3D_PHYSICS), "set_collision_layer", "get_collision_layer");
ADD_PROPERTY(PropertyInfo(Variant::INT, "collision_mask", PROPERTY_HINT_LAYERS_3D_PHYSICS), "set_collision_mask", "get_collision_mask");
2018-05-09 02:14:31 +02:00
BIND_ENUM_CONSTANT(OPERATION_UNION);
BIND_ENUM_CONSTANT(OPERATION_INTERSECTION);
BIND_ENUM_CONSTANT(OPERATION_SUBTRACTION);
}
CSGShape::CSGShape() {
operation = OPERATION_UNION;
parent = nullptr;
brush = nullptr;
dirty = false;
snap = 0.001;
use_collision = false;
collision_layer = 1;
collision_mask = 1;
calculate_tangents = true;
set_notify_local_transform(true);
}
CSGShape::~CSGShape() {
if (brush) {
memdelete(brush);
brush = nullptr;
}
}
//////////////////////////////////
CSGBrush *CSGCombiner::_build_brush() {
return memnew(CSGBrush); //does not build anything
}
CSGCombiner::CSGCombiner() {
}
/////////////////////
CSGBrush *CSGPrimitive::_create_brush_from_arrays(const PoolVector<Vector3> &p_vertices, const PoolVector<Vector2> &p_uv, const PoolVector<bool> &p_smooth, const PoolVector<Ref<Material>> &p_materials) {
CSGBrush *brush = memnew(CSGBrush);
PoolVector<bool> invert;
invert.resize(p_vertices.size() / 3);
{
int ic = invert.size();
PoolVector<bool>::Write w = invert.write();
for (int i = 0; i < ic; i++) {
w[i] = invert_faces;
}
}
brush->build_from_faces(p_vertices, p_uv, p_smooth, p_materials, invert);
return brush;
}
void CSGPrimitive::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_invert_faces", "invert_faces"), &CSGPrimitive::set_invert_faces);
ClassDB::bind_method(D_METHOD("is_inverting_faces"), &CSGPrimitive::is_inverting_faces);
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "invert_faces"), "set_invert_faces", "is_inverting_faces");
}
void CSGPrimitive::set_invert_faces(bool p_invert) {
if (invert_faces == p_invert) {
return;
}
invert_faces = p_invert;
_make_dirty();
}
bool CSGPrimitive::is_inverting_faces() {
return invert_faces;
}
CSGPrimitive::CSGPrimitive() {
invert_faces = false;
}
/////////////////////
CSGBrush *CSGMesh::_build_brush() {
if (!mesh.is_valid()) {
return memnew(CSGBrush);
}
PoolVector<Vector3> vertices;
PoolVector<bool> smooth;
PoolVector<Ref<Material>> materials;
PoolVector<Vector2> uvs;
Ref<Material> material = get_material();
for (int i = 0; i < mesh->get_surface_count(); i++) {
if (mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) {
continue;
}
Array arrays = mesh->surface_get_arrays(i);
if (arrays.size() == 0) {
_make_dirty();
ERR_FAIL_COND_V(arrays.size() == 0, memnew(CSGBrush));
}
PoolVector<Vector3> avertices = arrays[Mesh::ARRAY_VERTEX];
if (avertices.size() == 0) {
continue;
}
PoolVector<Vector3>::Read vr = avertices.read();
PoolVector<Vector3> anormals = arrays[Mesh::ARRAY_NORMAL];
PoolVector<Vector3>::Read nr;
bool nr_used = false;
if (anormals.size()) {
nr = anormals.read();
nr_used = true;
}
PoolVector<Vector2> auvs = arrays[Mesh::ARRAY_TEX_UV];
PoolVector<Vector2>::Read uvr;
bool uvr_used = false;
if (auvs.size()) {
uvr = auvs.read();
uvr_used = true;
}
Ref<Material> mat;
if (material.is_valid()) {
mat = material;
} else {
mat = mesh->surface_get_material(i);
}
PoolVector<int> aindices = arrays[Mesh::ARRAY_INDEX];
if (aindices.size()) {
int as = vertices.size();
int is = aindices.size();
vertices.resize(as + is);
smooth.resize((as + is) / 3);
materials.resize((as + is) / 3);
uvs.resize(as + is);
PoolVector<Vector3>::Write vw = vertices.write();
PoolVector<bool>::Write sw = smooth.write();
PoolVector<Vector2>::Write uvw = uvs.write();
PoolVector<Ref<Material>>::Write mw = materials.write();
PoolVector<int>::Read ir = aindices.read();
for (int j = 0; j < is; j += 3) {
Vector3 vertex[3];
Vector3 normal[3];
Vector2 uv[3];
for (int k = 0; k < 3; k++) {
int idx = ir[j + k];
vertex[k] = vr[idx];
if (nr_used) {
normal[k] = nr[idx];
}
if (uvr_used) {
uv[k] = uvr[idx];
}
}
bool flat = normal[0].distance_to(normal[1]) < CMP_EPSILON && normal[0].distance_to(normal[2]) < CMP_EPSILON;
vw[as + j + 0] = vertex[0];
vw[as + j + 1] = vertex[1];
vw[as + j + 2] = vertex[2];
uvw[as + j + 0] = uv[0];
uvw[as + j + 1] = uv[1];
uvw[as + j + 2] = uv[2];
sw[(as + j) / 3] = !flat;
mw[(as + j) / 3] = mat;
}
} else {
int as = vertices.size();
int is = avertices.size();
vertices.resize(as + is);
smooth.resize((as + is) / 3);
uvs.resize(as + is);
materials.resize((as + is) / 3);
PoolVector<Vector3>::Write vw = vertices.write();
PoolVector<bool>::Write sw = smooth.write();
PoolVector<Vector2>::Write uvw = uvs.write();
PoolVector<Ref<Material>>::Write mw = materials.write();
for (int j = 0; j < is; j += 3) {
Vector3 vertex[3];
Vector3 normal[3];
Vector2 uv[3];
for (int k = 0; k < 3; k++) {
vertex[k] = vr[j + k];
if (nr_used) {
normal[k] = nr[j + k];
}
if (uvr_used) {
uv[k] = uvr[j + k];
}
}
bool flat = normal[0].distance_to(normal[1]) < CMP_EPSILON && normal[0].distance_to(normal[2]) < CMP_EPSILON;
vw[as + j + 0] = vertex[0];
vw[as + j + 1] = vertex[1];
vw[as + j + 2] = vertex[2];
uvw[as + j + 0] = uv[0];
uvw[as + j + 1] = uv[1];
uvw[as + j + 2] = uv[2];
sw[(as + j) / 3] = !flat;
mw[(as + j) / 3] = mat;
}
}
}
if (vertices.size() == 0) {
return memnew(CSGBrush);
}
return _create_brush_from_arrays(vertices, uvs, smooth, materials);
}
void CSGMesh::_mesh_changed() {
_make_dirty();
update_gizmo();
}
void CSGMesh::set_material(const Ref<Material> &p_material) {
if (material == p_material) {
return;
}
material = p_material;
_make_dirty();
}
Ref<Material> CSGMesh::get_material() const {
return material;
}
void CSGMesh::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_mesh", "mesh"), &CSGMesh::set_mesh);
ClassDB::bind_method(D_METHOD("get_mesh"), &CSGMesh::get_mesh);
ClassDB::bind_method(D_METHOD("_mesh_changed"), &CSGMesh::_mesh_changed);
ClassDB::bind_method(D_METHOD("set_material", "material"), &CSGMesh::set_material);
ClassDB::bind_method(D_METHOD("get_material"), &CSGMesh::get_material);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "mesh", PROPERTY_HINT_RESOURCE_TYPE, "Mesh"), "set_mesh", "get_mesh");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "material", PROPERTY_HINT_RESOURCE_TYPE, "SpatialMaterial,ShaderMaterial"), "set_material", "get_material");
}
void CSGMesh::set_mesh(const Ref<Mesh> &p_mesh) {
if (mesh == p_mesh) {
return;
}
if (mesh.is_valid()) {
mesh->disconnect("changed", this, "_mesh_changed");
}
mesh = p_mesh;
if (mesh.is_valid()) {
mesh->connect("changed", this, "_mesh_changed");
}
_mesh_changed();
}
Ref<Mesh> CSGMesh::get_mesh() {
return mesh;
}
////////////////////////////////
CSGBrush *CSGSphere::_build_brush() {
// set our bounding box
CSGBrush *brush = memnew(CSGBrush);
int face_count = rings * radial_segments * 2 - radial_segments * 2;
bool invert_val = is_inverting_faces();
Ref<Material> material = get_material();
PoolVector<Vector3> faces;
PoolVector<Vector2> uvs;
PoolVector<bool> smooth;
PoolVector<Ref<Material>> materials;
PoolVector<bool> invert;
faces.resize(face_count * 3);
uvs.resize(face_count * 3);
smooth.resize(face_count);
materials.resize(face_count);
invert.resize(face_count);
{
PoolVector<Vector3>::Write facesw = faces.write();
PoolVector<Vector2>::Write uvsw = uvs.write();
PoolVector<bool>::Write smoothw = smooth.write();
PoolVector<Ref<Material>>::Write materialsw = materials.write();
PoolVector<bool>::Write invertw = invert.write();
// We want to follow an order that's convenient for UVs.
// For latitude step we start at the top and move down like in an image.
const double latitude_step = -Math_PI / rings;
const double longitude_step = Math_TAU / radial_segments;
int face = 0;
for (int i = 0; i < rings; i++) {
double latitude0 = latitude_step * i + Math_TAU / 4;
double cos0 = Math::cos(latitude0);
double sin0 = Math::sin(latitude0);
double v0 = double(i) / rings;
double latitude1 = latitude_step * (i + 1) + Math_TAU / 4;
double cos1 = Math::cos(latitude1);
double sin1 = Math::sin(latitude1);
double v1 = double(i + 1) / rings;
for (int j = 0; j < radial_segments; j++) {
double longitude0 = longitude_step * j;
// We give sin to X and cos to Z on purpose.
// This allows UVs to be CCW on +X so it maps to images well.
double x0 = Math::sin(longitude0);
double z0 = Math::cos(longitude0);
double u0 = double(j) / radial_segments;
double longitude1 = longitude_step * (j + 1);
double x1 = Math::sin(longitude1);
double z1 = Math::cos(longitude1);
double u1 = double(j + 1) / radial_segments;
Vector3 v[4] = {
Vector3(x0 * cos0, sin0, z0 * cos0) * radius,
Vector3(x1 * cos0, sin0, z1 * cos0) * radius,
Vector3(x1 * cos1, sin1, z1 * cos1) * radius,
Vector3(x0 * cos1, sin1, z0 * cos1) * radius,
};
Vector2 u[4] = {
2021-05-29 19:50:55 +02:00
Vector2(u0, v0),
Vector2(u1, v0),
Vector2(u1, v1),
Vector2(u0, v1),
};
// Draw the first face, but skip this at the north pole (i == 0).
if (i > 0) {
facesw[face * 3 + 0] = v[0];
facesw[face * 3 + 1] = v[1];
facesw[face * 3 + 2] = v[2];
uvsw[face * 3 + 0] = u[0];
uvsw[face * 3 + 1] = u[1];
uvsw[face * 3 + 2] = u[2];
smoothw[face] = smooth_faces;
invertw[face] = invert_val;
materialsw[face] = material;
face++;
}
// Draw the second face, but skip this at the south pole (i == rings - 1).
if (i < rings - 1) {
facesw[face * 3 + 0] = v[2];
facesw[face * 3 + 1] = v[3];
facesw[face * 3 + 2] = v[0];
uvsw[face * 3 + 0] = u[2];
uvsw[face * 3 + 1] = u[3];
uvsw[face * 3 + 2] = u[0];
smoothw[face] = smooth_faces;
invertw[face] = invert_val;
materialsw[face] = material;
face++;
}
}
}
if (face != face_count) {
ERR_PRINT("Face mismatch bug! fix code");
}
}
brush->build_from_faces(faces, uvs, smooth, materials, invert);
return brush;
}
void CSGSphere::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_radius", "radius"), &CSGSphere::set_radius);
ClassDB::bind_method(D_METHOD("get_radius"), &CSGSphere::get_radius);
ClassDB::bind_method(D_METHOD("set_radial_segments", "radial_segments"), &CSGSphere::set_radial_segments);
ClassDB::bind_method(D_METHOD("get_radial_segments"), &CSGSphere::get_radial_segments);
ClassDB::bind_method(D_METHOD("set_rings", "rings"), &CSGSphere::set_rings);
ClassDB::bind_method(D_METHOD("get_rings"), &CSGSphere::get_rings);
ClassDB::bind_method(D_METHOD("set_smooth_faces", "smooth_faces"), &CSGSphere::set_smooth_faces);
ClassDB::bind_method(D_METHOD("get_smooth_faces"), &CSGSphere::get_smooth_faces);
ClassDB::bind_method(D_METHOD("set_material", "material"), &CSGSphere::set_material);
ClassDB::bind_method(D_METHOD("get_material"), &CSGSphere::get_material);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "radius", PROPERTY_HINT_RANGE, "0.001,100.0,0.001"), "set_radius", "get_radius");
ADD_PROPERTY(PropertyInfo(Variant::INT, "radial_segments", PROPERTY_HINT_RANGE, "1,100,1"), "set_radial_segments", "get_radial_segments");
ADD_PROPERTY(PropertyInfo(Variant::INT, "rings", PROPERTY_HINT_RANGE, "1,100,1"), "set_rings", "get_rings");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "smooth_faces"), "set_smooth_faces", "get_smooth_faces");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "material", PROPERTY_HINT_RESOURCE_TYPE, "SpatialMaterial,ShaderMaterial"), "set_material", "get_material");
}
void CSGSphere::set_radius(const float p_radius) {
ERR_FAIL_COND(p_radius <= 0);
radius = p_radius;
_make_dirty();
update_gizmo();
_change_notify("radius");
}
float CSGSphere::get_radius() const {
return radius;
}
void CSGSphere::set_radial_segments(const int p_radial_segments) {
radial_segments = p_radial_segments > 4 ? p_radial_segments : 4;
_make_dirty();
update_gizmo();
}
int CSGSphere::get_radial_segments() const {
return radial_segments;
}
void CSGSphere::set_rings(const int p_rings) {
rings = p_rings > 1 ? p_rings : 1;
_make_dirty();
update_gizmo();
}
int CSGSphere::get_rings() const {
return rings;
}
void CSGSphere::set_smooth_faces(const bool p_smooth_faces) {
smooth_faces = p_smooth_faces;
_make_dirty();
}
bool CSGSphere::get_smooth_faces() const {
return smooth_faces;
}
void CSGSphere::set_material(const Ref<Material> &p_material) {
material = p_material;
_make_dirty();
}
Ref<Material> CSGSphere::get_material() const {
return material;
}
CSGSphere::CSGSphere() {
// defaults
radius = 1.0;
radial_segments = 12;
rings = 6;
smooth_faces = true;
}
///////////////
CSGBrush *CSGBox::_build_brush() {
// set our bounding box
CSGBrush *brush = memnew(CSGBrush);
int face_count = 12; //it's a cube..
bool invert_val = is_inverting_faces();
Ref<Material> material = get_material();
PoolVector<Vector3> faces;
PoolVector<Vector2> uvs;
PoolVector<bool> smooth;
PoolVector<Ref<Material>> materials;
PoolVector<bool> invert;
faces.resize(face_count * 3);
uvs.resize(face_count * 3);
smooth.resize(face_count);
materials.resize(face_count);
invert.resize(face_count);
{
PoolVector<Vector3>::Write facesw = faces.write();
PoolVector<Vector2>::Write uvsw = uvs.write();
PoolVector<bool>::Write smoothw = smooth.write();
PoolVector<Ref<Material>>::Write materialsw = materials.write();
PoolVector<bool>::Write invertw = invert.write();
int face = 0;
Vector3 vertex_mul(width * 0.5, height * 0.5, depth * 0.5);
{
for (int i = 0; i < 6; i++) {
Vector3 face_points[4];
float uv_points[8] = { 0, 0, 0, 1, 1, 1, 1, 0 };
for (int j = 0; j < 4; j++) {
float v[3];
v[0] = 1.0;
v[1] = 1 - 2 * ((j >> 1) & 1);
v[2] = v[1] * (1 - 2 * (j & 1));
for (int k = 0; k < 3; k++) {
if (i < 3) {
face_points[j][(i + k) % 3] = v[k];
} else {
face_points[3 - j][(i + k) % 3] = -v[k];
}
}
}
Vector2 u[4];
for (int j = 0; j < 4; j++) {
u[j] = Vector2(uv_points[j * 2 + 0], uv_points[j * 2 + 1]);
}
//face 1
facesw[face * 3 + 0] = face_points[0] * vertex_mul;
facesw[face * 3 + 1] = face_points[1] * vertex_mul;
facesw[face * 3 + 2] = face_points[2] * vertex_mul;
uvsw[face * 3 + 0] = u[0];
uvsw[face * 3 + 1] = u[1];
uvsw[face * 3 + 2] = u[2];
smoothw[face] = false;
invertw[face] = invert_val;
materialsw[face] = material;
face++;
//face 1
facesw[face * 3 + 0] = face_points[2] * vertex_mul;
facesw[face * 3 + 1] = face_points[3] * vertex_mul;
facesw[face * 3 + 2] = face_points[0] * vertex_mul;
uvsw[face * 3 + 0] = u[2];
uvsw[face * 3 + 1] = u[3];
uvsw[face * 3 + 2] = u[0];
smoothw[face] = false;
invertw[face] = invert_val;
materialsw[face] = material;
face++;
}
}
if (face != face_count) {
ERR_PRINT("Face mismatch bug! fix code");
}
}
brush->build_from_faces(faces, uvs, smooth, materials, invert);
return brush;
}
void CSGBox::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_width", "width"), &CSGBox::set_width);
ClassDB::bind_method(D_METHOD("get_width"), &CSGBox::get_width);
ClassDB::bind_method(D_METHOD("set_height", "height"), &CSGBox::set_height);
ClassDB::bind_method(D_METHOD("get_height"), &CSGBox::get_height);
ClassDB::bind_method(D_METHOD("set_depth", "depth"), &CSGBox::set_depth);
ClassDB::bind_method(D_METHOD("get_depth"), &CSGBox::get_depth);
ClassDB::bind_method(D_METHOD("set_material", "material"), &CSGBox::set_material);
ClassDB::bind_method(D_METHOD("get_material"), &CSGBox::get_material);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "width", PROPERTY_HINT_EXP_RANGE, "0.001,1000.0,0.001,or_greater"), "set_width", "get_width");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "height", PROPERTY_HINT_EXP_RANGE, "0.001,1000.0,0.001,or_greater"), "set_height", "get_height");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "depth", PROPERTY_HINT_EXP_RANGE, "0.001,1000.0,0.001,or_greater"), "set_depth", "get_depth");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "material", PROPERTY_HINT_RESOURCE_TYPE, "SpatialMaterial,ShaderMaterial"), "set_material", "get_material");
}
void CSGBox::set_width(const float p_width) {
width = p_width;
_make_dirty();
update_gizmo();
_change_notify("width");
}
float CSGBox::get_width() const {
return width;
}
void CSGBox::set_height(const float p_height) {
height = p_height;
_make_dirty();
update_gizmo();
_change_notify("height");
}
float CSGBox::get_height() const {
return height;
}
void CSGBox::set_depth(const float p_depth) {
depth = p_depth;
_make_dirty();
update_gizmo();
_change_notify("depth");
}
float CSGBox::get_depth() const {
return depth;
}
void CSGBox::set_material(const Ref<Material> &p_material) {
material = p_material;
_make_dirty();
update_gizmo();
}
Ref<Material> CSGBox::get_material() const {
return material;
}
CSGBox::CSGBox() {
// defaults
width = 2.0;
height = 2.0;
depth = 2.0;
}
///////////////
CSGBrush *CSGCylinder::_build_brush() {
// set our bounding box
CSGBrush *brush = memnew(CSGBrush);
int face_count = sides * (cone ? 1 : 2) + sides + (cone ? 0 : sides);
bool invert_val = is_inverting_faces();
Ref<Material> material = get_material();
PoolVector<Vector3> faces;
PoolVector<Vector2> uvs;
PoolVector<bool> smooth;
PoolVector<Ref<Material>> materials;
PoolVector<bool> invert;
faces.resize(face_count * 3);
uvs.resize(face_count * 3);
smooth.resize(face_count);
materials.resize(face_count);
invert.resize(face_count);
{
PoolVector<Vector3>::Write facesw = faces.write();
PoolVector<Vector2>::Write uvsw = uvs.write();
PoolVector<bool>::Write smoothw = smooth.write();
PoolVector<Ref<Material>>::Write materialsw = materials.write();
PoolVector<bool>::Write invertw = invert.write();
int face = 0;
Vector3 vertex_mul(radius, height * 0.5, radius);
{
for (int i = 0; i < sides; i++) {
float inc = float(i) / sides;
float inc_n = float((i + 1)) / sides;
float ang = inc * Math_PI * 2.0;
float ang_n = inc_n * Math_PI * 2.0;
Vector3 base(Math::cos(ang), 0, Math::sin(ang));
Vector3 base_n(Math::cos(ang_n), 0, Math::sin(ang_n));
Vector3 face_points[4] = {
base + Vector3(0, -1, 0),
base_n + Vector3(0, -1, 0),
base_n * (cone ? 0.0 : 1.0) + Vector3(0, 1, 0),
base * (cone ? 0.0 : 1.0) + Vector3(0, 1, 0),
};
Vector2 u[4] = {
Vector2(inc, 0),
Vector2(inc_n, 0),
Vector2(inc_n, 1),
Vector2(inc, 1),
};
//side face 1
facesw[face * 3 + 0] = face_points[0] * vertex_mul;
facesw[face * 3 + 1] = face_points[1] * vertex_mul;
facesw[face * 3 + 2] = face_points[2] * vertex_mul;
uvsw[face * 3 + 0] = u[0];
uvsw[face * 3 + 1] = u[1];
uvsw[face * 3 + 2] = u[2];
smoothw[face] = smooth_faces;
invertw[face] = invert_val;
materialsw[face] = material;
face++;
if (!cone) {
//side face 2
facesw[face * 3 + 0] = face_points[2] * vertex_mul;
facesw[face * 3 + 1] = face_points[3] * vertex_mul;
facesw[face * 3 + 2] = face_points[0] * vertex_mul;
uvsw[face * 3 + 0] = u[2];
uvsw[face * 3 + 1] = u[3];
uvsw[face * 3 + 2] = u[0];
smoothw[face] = smooth_faces;
invertw[face] = invert_val;
materialsw[face] = material;
face++;
}
//bottom face 1
facesw[face * 3 + 0] = face_points[1] * vertex_mul;
facesw[face * 3 + 1] = face_points[0] * vertex_mul;
facesw[face * 3 + 2] = Vector3(0, -1, 0) * vertex_mul;
uvsw[face * 3 + 0] = Vector2(face_points[1].x, face_points[1].y) * 0.5 + Vector2(0.5, 0.5);
uvsw[face * 3 + 1] = Vector2(face_points[0].x, face_points[0].y) * 0.5 + Vector2(0.5, 0.5);
uvsw[face * 3 + 2] = Vector2(0.5, 0.5);
smoothw[face] = false;
invertw[face] = invert_val;
materialsw[face] = material;
face++;
if (!cone) {
//top face 1
facesw[face * 3 + 0] = face_points[3] * vertex_mul;
facesw[face * 3 + 1] = face_points[2] * vertex_mul;
facesw[face * 3 + 2] = Vector3(0, 1, 0) * vertex_mul;
uvsw[face * 3 + 0] = Vector2(face_points[1].x, face_points[1].y) * 0.5 + Vector2(0.5, 0.5);
uvsw[face * 3 + 1] = Vector2(face_points[0].x, face_points[0].y) * 0.5 + Vector2(0.5, 0.5);
uvsw[face * 3 + 2] = Vector2(0.5, 0.5);
smoothw[face] = false;
invertw[face] = invert_val;
materialsw[face] = material;
face++;
}
}
}
if (face != face_count) {
ERR_PRINT("Face mismatch bug! fix code");
}
}
brush->build_from_faces(faces, uvs, smooth, materials, invert);
return brush;
}
void CSGCylinder::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_radius", "radius"), &CSGCylinder::set_radius);
ClassDB::bind_method(D_METHOD("get_radius"), &CSGCylinder::get_radius);
ClassDB::bind_method(D_METHOD("set_height", "height"), &CSGCylinder::set_height);
ClassDB::bind_method(D_METHOD("get_height"), &CSGCylinder::get_height);
ClassDB::bind_method(D_METHOD("set_sides", "sides"), &CSGCylinder::set_sides);
ClassDB::bind_method(D_METHOD("get_sides"), &CSGCylinder::get_sides);
ClassDB::bind_method(D_METHOD("set_cone", "cone"), &CSGCylinder::set_cone);
ClassDB::bind_method(D_METHOD("is_cone"), &CSGCylinder::is_cone);
ClassDB::bind_method(D_METHOD("set_material", "material"), &CSGCylinder::set_material);
ClassDB::bind_method(D_METHOD("get_material"), &CSGCylinder::get_material);
ClassDB::bind_method(D_METHOD("set_smooth_faces", "smooth_faces"), &CSGCylinder::set_smooth_faces);
ClassDB::bind_method(D_METHOD("get_smooth_faces"), &CSGCylinder::get_smooth_faces);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "radius", PROPERTY_HINT_EXP_RANGE, "0.001,1000.0,0.001,or_greater"), "set_radius", "get_radius");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "height", PROPERTY_HINT_EXP_RANGE, "0.001,1000.0,0.001,or_greater"), "set_height", "get_height");
ADD_PROPERTY(PropertyInfo(Variant::INT, "sides", PROPERTY_HINT_RANGE, "3,64,1"), "set_sides", "get_sides");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "cone"), "set_cone", "is_cone");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "smooth_faces"), "set_smooth_faces", "get_smooth_faces");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "material", PROPERTY_HINT_RESOURCE_TYPE, "SpatialMaterial,ShaderMaterial"), "set_material", "get_material");
}
void CSGCylinder::set_radius(const float p_radius) {
radius = p_radius;
_make_dirty();
update_gizmo();
_change_notify("radius");
}
float CSGCylinder::get_radius() const {
return radius;
}
void CSGCylinder::set_height(const float p_height) {
height = p_height;
_make_dirty();
update_gizmo();
_change_notify("height");
}
float CSGCylinder::get_height() const {
return height;
}
void CSGCylinder::set_sides(const int p_sides) {
ERR_FAIL_COND(p_sides < 3);
sides = p_sides;
_make_dirty();
update_gizmo();
}
int CSGCylinder::get_sides() const {
return sides;
}
void CSGCylinder::set_cone(const bool p_cone) {
cone = p_cone;
_make_dirty();
update_gizmo();
}
bool CSGCylinder::is_cone() const {
return cone;
}
void CSGCylinder::set_smooth_faces(const bool p_smooth_faces) {
smooth_faces = p_smooth_faces;
_make_dirty();
}
bool CSGCylinder::get_smooth_faces() const {
return smooth_faces;
}
void CSGCylinder::set_material(const Ref<Material> &p_material) {
material = p_material;
_make_dirty();
}
Ref<Material> CSGCylinder::get_material() const {
return material;
}
CSGCylinder::CSGCylinder() {
// defaults
radius = 1.0;
height = 1.0;
sides = 8;
cone = false;
smooth_faces = true;
}
///////////////
CSGBrush *CSGTorus::_build_brush() {
// set our bounding box
float min_radius = inner_radius;
float max_radius = outer_radius;
if (min_radius == max_radius) {
return memnew(CSGBrush); //sorry, can't
}
if (min_radius > max_radius) {
SWAP(min_radius, max_radius);
}
float radius = (max_radius - min_radius) * 0.5;
CSGBrush *brush = memnew(CSGBrush);
int face_count = ring_sides * sides * 2;
bool invert_val = is_inverting_faces();
Ref<Material> material = get_material();
PoolVector<Vector3> faces;
PoolVector<Vector2> uvs;
PoolVector<bool> smooth;
PoolVector<Ref<Material>> materials;
PoolVector<bool> invert;
faces.resize(face_count * 3);
uvs.resize(face_count * 3);
smooth.resize(face_count);
materials.resize(face_count);
invert.resize(face_count);
{
PoolVector<Vector3>::Write facesw = faces.write();
PoolVector<Vector2>::Write uvsw = uvs.write();
PoolVector<bool>::Write smoothw = smooth.write();
PoolVector<Ref<Material>>::Write materialsw = materials.write();
PoolVector<bool>::Write invertw = invert.write();
int face = 0;
{
for (int i = 0; i < sides; i++) {
float inci = float(i) / sides;
float inci_n = float((i + 1)) / sides;
float angi = inci * Math_PI * 2.0;
float angi_n = inci_n * Math_PI * 2.0;
Vector3 normali = Vector3(Math::cos(angi), 0, Math::sin(angi));
Vector3 normali_n = Vector3(Math::cos(angi_n), 0, Math::sin(angi_n));
for (int j = 0; j < ring_sides; j++) {
float incj = float(j) / ring_sides;
float incj_n = float((j + 1)) / ring_sides;
float angj = incj * Math_PI * 2.0;
float angj_n = incj_n * Math_PI * 2.0;
Vector2 normalj = Vector2(Math::cos(angj), Math::sin(angj)) * radius + Vector2(min_radius + radius, 0);
Vector2 normalj_n = Vector2(Math::cos(angj_n), Math::sin(angj_n)) * radius + Vector2(min_radius + radius, 0);
Vector3 face_points[4] = {
Vector3(normali.x * normalj.x, normalj.y, normali.z * normalj.x),
Vector3(normali.x * normalj_n.x, normalj_n.y, normali.z * normalj_n.x),
Vector3(normali_n.x * normalj_n.x, normalj_n.y, normali_n.z * normalj_n.x),
Vector3(normali_n.x * normalj.x, normalj.y, normali_n.z * normalj.x)
};
Vector2 u[4] = {
Vector2(inci, incj),
Vector2(inci, incj_n),
Vector2(inci_n, incj_n),
Vector2(inci_n, incj),
};
// face 1
facesw[face * 3 + 0] = face_points[0];
facesw[face * 3 + 1] = face_points[2];
facesw[face * 3 + 2] = face_points[1];
uvsw[face * 3 + 0] = u[0];
uvsw[face * 3 + 1] = u[2];
uvsw[face * 3 + 2] = u[1];
smoothw[face] = smooth_faces;
invertw[face] = invert_val;
materialsw[face] = material;
face++;
//face 2
facesw[face * 3 + 0] = face_points[3];
facesw[face * 3 + 1] = face_points[2];
facesw[face * 3 + 2] = face_points[0];
uvsw[face * 3 + 0] = u[3];
uvsw[face * 3 + 1] = u[2];
uvsw[face * 3 + 2] = u[0];
smoothw[face] = smooth_faces;
invertw[face] = invert_val;
materialsw[face] = material;
face++;
}
}
}
if (face != face_count) {
ERR_PRINT("Face mismatch bug! fix code");
}
}
brush->build_from_faces(faces, uvs, smooth, materials, invert);
return brush;
}
void CSGTorus::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_inner_radius", "radius"), &CSGTorus::set_inner_radius);
ClassDB::bind_method(D_METHOD("get_inner_radius"), &CSGTorus::get_inner_radius);
ClassDB::bind_method(D_METHOD("set_outer_radius", "radius"), &CSGTorus::set_outer_radius);
ClassDB::bind_method(D_METHOD("get_outer_radius"), &CSGTorus::get_outer_radius);
ClassDB::bind_method(D_METHOD("set_sides", "sides"), &CSGTorus::set_sides);
ClassDB::bind_method(D_METHOD("get_sides"), &CSGTorus::get_sides);
ClassDB::bind_method(D_METHOD("set_ring_sides", "sides"), &CSGTorus::set_ring_sides);
ClassDB::bind_method(D_METHOD("get_ring_sides"), &CSGTorus::get_ring_sides);
ClassDB::bind_method(D_METHOD("set_material", "material"), &CSGTorus::set_material);
ClassDB::bind_method(D_METHOD("get_material"), &CSGTorus::get_material);
ClassDB::bind_method(D_METHOD("set_smooth_faces", "smooth_faces"), &CSGTorus::set_smooth_faces);
ClassDB::bind_method(D_METHOD("get_smooth_faces"), &CSGTorus::get_smooth_faces);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "inner_radius", PROPERTY_HINT_EXP_RANGE, "0.001,1000.0,0.001,or_greater"), "set_inner_radius", "get_inner_radius");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "outer_radius", PROPERTY_HINT_EXP_RANGE, "0.001,1000.0,0.001,or_greater"), "set_outer_radius", "get_outer_radius");
ADD_PROPERTY(PropertyInfo(Variant::INT, "sides", PROPERTY_HINT_RANGE, "3,64,1"), "set_sides", "get_sides");
ADD_PROPERTY(PropertyInfo(Variant::INT, "ring_sides", PROPERTY_HINT_RANGE, "3,64,1"), "set_ring_sides", "get_ring_sides");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "smooth_faces"), "set_smooth_faces", "get_smooth_faces");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "material", PROPERTY_HINT_RESOURCE_TYPE, "SpatialMaterial,ShaderMaterial"), "set_material", "get_material");
}
void CSGTorus::set_inner_radius(const float p_inner_radius) {
inner_radius = p_inner_radius;
_make_dirty();
update_gizmo();
_change_notify("inner_radius");
}
float CSGTorus::get_inner_radius() const {
return inner_radius;
}
void CSGTorus::set_outer_radius(const float p_outer_radius) {
outer_radius = p_outer_radius;
_make_dirty();
update_gizmo();
_change_notify("outer_radius");
}
float CSGTorus::get_outer_radius() const {
return outer_radius;
}
void CSGTorus::set_sides(const int p_sides) {
ERR_FAIL_COND(p_sides < 3);
sides = p_sides;
_make_dirty();
update_gizmo();
}
int CSGTorus::get_sides() const {
return sides;
}
void CSGTorus::set_ring_sides(const int p_ring_sides) {
ERR_FAIL_COND(p_ring_sides < 3);
ring_sides = p_ring_sides;
_make_dirty();
update_gizmo();
}
int CSGTorus::get_ring_sides() const {
return ring_sides;
}
void CSGTorus::set_smooth_faces(const bool p_smooth_faces) {
smooth_faces = p_smooth_faces;
_make_dirty();
}
bool CSGTorus::get_smooth_faces() const {
return smooth_faces;
}
void CSGTorus::set_material(const Ref<Material> &p_material) {
material = p_material;
_make_dirty();
}
Ref<Material> CSGTorus::get_material() const {
return material;
}
CSGTorus::CSGTorus() {
// defaults
inner_radius = 2.0;
outer_radius = 3.0;
sides = 8;
ring_sides = 6;
smooth_faces = true;
}
///////////////
CSGBrush *CSGPolygon::_build_brush() {
2021-05-30 19:35:52 +02:00
CSGBrush *brush = memnew(CSGBrush);
if (polygon.size() < 3) {
2021-05-30 19:35:52 +02:00
return brush;
}
2021-05-30 19:35:52 +02:00
// Triangulate polygon shape.
Vector<Point2> shape_polygon = polygon;
if (Triangulate::get_area(shape_polygon) > 0) {
shape_polygon.invert();
}
2021-05-30 19:35:52 +02:00
int shape_sides = shape_polygon.size();
Vector<int> shape_faces = Geometry::triangulate_polygon(shape_polygon);
ERR_FAIL_COND_V_MSG(shape_faces.size() < 3, brush, "Failed to triangulate CSGPolygon");
// Get polygon enclosing Rect2.
Rect2 shape_rect(shape_polygon[0], Vector2());
for (int i = 1; i < shape_sides; i++) {
shape_rect.expand_to(shape_polygon[i]);
}
2021-05-30 19:35:52 +02:00
// If MODE_PATH, check if curve has changed.
Ref<Curve3D> curve;
2021-05-30 19:35:52 +02:00
if (mode == MODE_PATH) {
Path *current_path = Object::cast_to<Path>(get_node_or_null(path_node));
if (path != current_path) {
if (path) {
path->disconnect("tree_exited", this, "_path_exited");
path->disconnect("curve_changed", this, "_path_changed");
}
2021-05-30 19:35:52 +02:00
path = current_path;
if (path) {
path->connect("tree_exited", this, "_path_exited");
path->connect("curve_changed", this, "_path_changed");
}
2018-11-19 11:57:10 +01:00
}
if (!path) {
2021-05-30 19:35:52 +02:00
return brush;
}
curve = path->get_curve();
2021-05-30 19:35:52 +02:00
if (curve.is_null() || curve->get_point_count() < 2) {
return brush;
}
}
2021-05-30 19:35:52 +02:00
// Calculate the number of extrusions, ends and faces.
int extrusions = 0;
int extrusion_face_count = shape_sides * 2;
int end_count = 0;
int shape_face_count = shape_faces.size() / 3;
switch (mode) {
case MODE_DEPTH:
2021-05-30 19:35:52 +02:00
extrusions = 1;
end_count = 2;
break;
case MODE_SPIN:
2021-05-30 19:35:52 +02:00
extrusions = spin_sides;
if (spin_degrees < 360) {
end_count = 2;
}
break;
case MODE_PATH: {
2021-05-30 19:35:52 +02:00
extrusions = Math::ceil(1.0 * curve->get_point_count() / path_interval);
if (!path_joined) {
end_count = 2;
extrusions -= 1;
}
} break;
}
2021-05-30 19:35:52 +02:00
int face_count = extrusions * extrusion_face_count + end_count * shape_face_count;
2021-05-30 19:35:52 +02:00
// Initialize variables used to create the mesh.
Ref<Material> material = get_material();
PoolVector<Vector3> faces;
PoolVector<Vector2> uvs;
PoolVector<bool> smooth;
PoolVector<Ref<Material>> materials;
PoolVector<bool> invert;
faces.resize(face_count * 3);
uvs.resize(face_count * 3);
smooth.resize(face_count);
materials.resize(face_count);
invert.resize(face_count);
2021-05-30 19:35:52 +02:00
PoolVector<Vector3>::Write facesw = faces.write();
PoolVector<Vector2>::Write uvsw = uvs.write();
PoolVector<bool>::Write smoothw = smooth.write();
PoolVector<Ref<Material>>::Write materialsw = materials.write();
PoolVector<bool>::Write invertw = invert.write();
int face = 0;
Transform base_xform;
Transform current_xform;
Transform previous_xform;
double u_step = 1.0 / extrusions;
double v_step = 1.0 / shape_sides;
double spin_step = Math::deg2rad(spin_degrees / spin_sides);
double extrusion_step = 1.0 / extrusions;
if (mode == MODE_PATH) {
if (path_joined) {
extrusion_step = 1.0 / (extrusions - 1);
}
extrusion_step *= curve->get_baked_length();
}
2021-05-30 19:35:52 +02:00
if (mode == MODE_PATH) {
if (!path_local) {
base_xform = path->get_global_transform();
}
2021-05-30 19:35:52 +02:00
Vector3 current_point = curve->interpolate_baked(0);
Vector3 next_point = curve->interpolate_baked(extrusion_step);
Vector3 current_up = Vector3(0, 1, 0);
Vector3 direction = next_point - current_point;
2021-05-30 19:35:52 +02:00
if (path_joined) {
Vector3 last_point = curve->interpolate_baked(curve->get_baked_length());
direction = next_point - last_point;
}
2021-05-30 19:35:52 +02:00
switch (path_rotation) {
case PATH_ROTATION_POLYGON:
direction = Vector3(0, 0, -1);
break;
case PATH_ROTATION_PATH:
break;
case PATH_ROTATION_PATH_FOLLOW:
current_up = curve->interpolate_baked_up_vector(0);
break;
}
2021-05-30 19:35:52 +02:00
Transform facing = Transform().looking_at(direction, current_up);
current_xform = base_xform.translated(current_point) * facing;
}
2021-05-30 19:35:52 +02:00
// Create the mesh.
if (end_count > 0) {
// Add front end face.
for (int face_idx = 0; face_idx < shape_face_count; face_idx++) {
for (int face_vertex_idx = 0; face_vertex_idx < 3; face_vertex_idx++) {
// We need to reverse the rotation of the shape face vertices.
int index = shape_faces[face_idx * 3 + 2 - face_vertex_idx];
Point2 p = shape_polygon[index];
Point2 uv = (p - shape_rect.position) / shape_rect.size;
// Use the left side of the bottom half of the y-inverted texture.
uv.x = uv.x / 2;
uv.y = 1 - (uv.y / 2);
facesw[face * 3 + face_vertex_idx] = current_xform.xform(Vector3(p.x, p.y, 0));
uvsw[face * 3 + face_vertex_idx] = uv;
}
2021-05-30 19:35:52 +02:00
smoothw[face] = false;
materialsw[face] = material;
invertw[face] = invert_faces;
face++;
}
}
2021-05-30 19:35:52 +02:00
// Add extrusion faces.
for (int x0 = 0; x0 < extrusions; x0++) {
previous_xform = current_xform;
2021-05-30 19:35:52 +02:00
switch (mode) {
case MODE_DEPTH: {
current_xform.translate(Vector3(0, 0, -depth));
} break;
case MODE_SPIN: {
2021-05-30 19:35:52 +02:00
current_xform.rotate(Vector3(0, 1, 0), spin_step);
} break;
case MODE_PATH: {
2021-05-30 19:35:52 +02:00
double previous_offset = x0 * extrusion_step;
double current_offset = (x0 + 1) * extrusion_step;
double next_offset = (x0 + 2) * extrusion_step;
if (x0 == extrusions - 1) {
if (path_joined) {
current_offset = 0;
next_offset = extrusion_step;
} else {
2021-05-30 19:35:52 +02:00
next_offset = current_offset;
}
2021-05-30 19:35:52 +02:00
}
2021-05-30 19:35:52 +02:00
Vector3 previous_point = curve->interpolate_baked(previous_offset);
Vector3 current_point = curve->interpolate_baked(current_offset);
Vector3 next_point = curve->interpolate_baked(next_offset);
Vector3 current_up = Vector3(0, 1, 0);
Vector3 direction = next_point - previous_point;
2021-05-30 19:35:52 +02:00
switch (path_rotation) {
case PATH_ROTATION_POLYGON:
direction = Vector3(0, 0, -1);
break;
case PATH_ROTATION_PATH:
break;
case PATH_ROTATION_PATH_FOLLOW:
current_up = curve->interpolate_baked_up_vector(current_offset);
break;
}
2021-05-30 19:35:52 +02:00
Transform facing = Transform().looking_at(direction, current_up);
current_xform = base_xform.translated(current_point) * facing;
} break;
}
2021-05-30 19:35:52 +02:00
double u0 = x0 * u_step;
double u1 = ((x0 + 1) * u_step);
if (mode == MODE_PATH && !path_continuous_u) {
u0 = 0.0;
u1 = 1.0;
}
2021-05-30 19:35:52 +02:00
for (int y0 = 0; y0 < shape_sides; y0++) {
int y1 = (y0 + 1) % shape_sides;
// Use the top half of the texture.
double v0 = (y0 * v_step) / 2;
double v1 = ((y0 + 1) * v_step) / 2;
Vector3 v[4] = {
previous_xform.xform(Vector3(shape_polygon[y0].x, shape_polygon[y0].y, 0)),
current_xform.xform(Vector3(shape_polygon[y0].x, shape_polygon[y0].y, 0)),
current_xform.xform(Vector3(shape_polygon[y1].x, shape_polygon[y1].y, 0)),
previous_xform.xform(Vector3(shape_polygon[y1].x, shape_polygon[y1].y, 0)),
};
Vector2 u[4] = {
Vector2(u0, v0),
Vector2(u1, v0),
Vector2(u1, v1),
Vector2(u0, v1),
};
// Face 1
facesw[face * 3 + 0] = v[0];
facesw[face * 3 + 1] = v[1];
facesw[face * 3 + 2] = v[2];
uvsw[face * 3 + 0] = u[0];
uvsw[face * 3 + 1] = u[1];
uvsw[face * 3 + 2] = u[2];
smoothw[face] = smooth_faces;
invertw[face] = invert_faces;
materialsw[face] = material;
face++;
// Face 2
facesw[face * 3 + 0] = v[2];
facesw[face * 3 + 1] = v[3];
facesw[face * 3 + 2] = v[0];
uvsw[face * 3 + 0] = u[2];
uvsw[face * 3 + 1] = u[3];
uvsw[face * 3 + 2] = u[0];
smoothw[face] = smooth_faces;
invertw[face] = invert_faces;
materialsw[face] = material;
face++;
}
}
if (end_count > 1) {
// Add back end face.
for (int face_idx = 0; face_idx < shape_face_count; face_idx++) {
for (int face_vertex_idx = 0; face_vertex_idx < 3; face_vertex_idx++) {
int index = shape_faces[face_idx * 3 + face_vertex_idx];
Point2 p = shape_polygon[index];
Point2 uv = (p - shape_rect.position) / shape_rect.size;
// Use the x-inverted ride side of the bottom half of the y-inverted texture.
uv.x = 1 - uv.x / 2;
uv.y = 1 - (uv.y / 2);
facesw[face * 3 + face_vertex_idx] = current_xform.xform(Vector3(p.x, p.y, 0));
uvsw[face * 3 + face_vertex_idx] = uv;
}
2018-11-19 11:57:10 +01:00
2021-05-30 19:35:52 +02:00
smoothw[face] = false;
materialsw[face] = material;
invertw[face] = invert_faces;
face++;
}
}
2021-05-30 19:35:52 +02:00
ERR_FAIL_COND_V_MSG(face != face_count, brush, "Bug: Failed to create the CSGPolygon mesh correctly.");
brush->build_from_faces(faces, uvs, smooth, materials, invert);
return brush;
}
void CSGPolygon::_notification(int p_what) {
if (p_what == NOTIFICATION_EXIT_TREE) {
2021-05-30 19:35:52 +02:00
if (path) {
path->disconnect("tree_exited", this, "_path_exited");
path->disconnect("curve_changed", this, "_path_changed");
path = nullptr;
}
}
}
void CSGPolygon::_validate_property(PropertyInfo &property) const {
if (property.name.begins_with("spin") && mode != MODE_SPIN) {
property.usage = 0;
}
if (property.name.begins_with("path") && mode != MODE_PATH) {
property.usage = 0;
}
if (property.name == "depth" && mode != MODE_DEPTH) {
property.usage = 0;
}
CSGShape::_validate_property(property);
}
void CSGPolygon::_path_changed() {
_make_dirty();
update_gizmo();
}
void CSGPolygon::_path_exited() {
2021-05-30 19:35:52 +02:00
path = nullptr;
}
void CSGPolygon::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_polygon", "polygon"), &CSGPolygon::set_polygon);
ClassDB::bind_method(D_METHOD("get_polygon"), &CSGPolygon::get_polygon);
ClassDB::bind_method(D_METHOD("set_mode", "mode"), &CSGPolygon::set_mode);
ClassDB::bind_method(D_METHOD("get_mode"), &CSGPolygon::get_mode);
ClassDB::bind_method(D_METHOD("set_depth", "depth"), &CSGPolygon::set_depth);
ClassDB::bind_method(D_METHOD("get_depth"), &CSGPolygon::get_depth);
ClassDB::bind_method(D_METHOD("set_spin_degrees", "degrees"), &CSGPolygon::set_spin_degrees);
ClassDB::bind_method(D_METHOD("get_spin_degrees"), &CSGPolygon::get_spin_degrees);
ClassDB::bind_method(D_METHOD("set_spin_sides", "spin_sides"), &CSGPolygon::set_spin_sides);
ClassDB::bind_method(D_METHOD("get_spin_sides"), &CSGPolygon::get_spin_sides);
ClassDB::bind_method(D_METHOD("set_path_node", "path"), &CSGPolygon::set_path_node);
ClassDB::bind_method(D_METHOD("get_path_node"), &CSGPolygon::get_path_node);
2021-05-30 19:35:52 +02:00
ClassDB::bind_method(D_METHOD("set_path_interval", "path_interval"), &CSGPolygon::set_path_interval);
ClassDB::bind_method(D_METHOD("get_path_interval"), &CSGPolygon::get_path_interval);
2021-05-30 19:35:52 +02:00
ClassDB::bind_method(D_METHOD("set_path_rotation", "path_rotation"), &CSGPolygon::set_path_rotation);
ClassDB::bind_method(D_METHOD("get_path_rotation"), &CSGPolygon::get_path_rotation);
ClassDB::bind_method(D_METHOD("set_path_local", "enable"), &CSGPolygon::set_path_local);
ClassDB::bind_method(D_METHOD("is_path_local"), &CSGPolygon::is_path_local);
ClassDB::bind_method(D_METHOD("set_path_continuous_u", "enable"), &CSGPolygon::set_path_continuous_u);
ClassDB::bind_method(D_METHOD("is_path_continuous_u"), &CSGPolygon::is_path_continuous_u);
ClassDB::bind_method(D_METHOD("set_path_joined", "enable"), &CSGPolygon::set_path_joined);
ClassDB::bind_method(D_METHOD("is_path_joined"), &CSGPolygon::is_path_joined);
ClassDB::bind_method(D_METHOD("set_material", "material"), &CSGPolygon::set_material);
ClassDB::bind_method(D_METHOD("get_material"), &CSGPolygon::get_material);
ClassDB::bind_method(D_METHOD("set_smooth_faces", "smooth_faces"), &CSGPolygon::set_smooth_faces);
ClassDB::bind_method(D_METHOD("get_smooth_faces"), &CSGPolygon::get_smooth_faces);
ClassDB::bind_method(D_METHOD("_is_editable_3d_polygon"), &CSGPolygon::_is_editable_3d_polygon);
ClassDB::bind_method(D_METHOD("_has_editable_3d_polygon_no_depth"), &CSGPolygon::_has_editable_3d_polygon_no_depth);
ClassDB::bind_method(D_METHOD("_path_exited"), &CSGPolygon::_path_exited);
ClassDB::bind_method(D_METHOD("_path_changed"), &CSGPolygon::_path_changed);
ADD_PROPERTY(PropertyInfo(Variant::POOL_VECTOR2_ARRAY, "polygon"), "set_polygon", "get_polygon");
ADD_PROPERTY(PropertyInfo(Variant::INT, "mode", PROPERTY_HINT_ENUM, "Depth,Spin,Path"), "set_mode", "get_mode");
2021-05-30 19:35:52 +02:00
ADD_PROPERTY(PropertyInfo(Variant::REAL, "depth", PROPERTY_HINT_EXP_RANGE, "0.01,100.0,0.01,or_greater"), "set_depth", "get_depth");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "spin_degrees", PROPERTY_HINT_RANGE, "1,360,0.1"), "set_spin_degrees", "get_spin_degrees");
ADD_PROPERTY(PropertyInfo(Variant::INT, "spin_sides", PROPERTY_HINT_RANGE, "3,64,1"), "set_spin_sides", "get_spin_sides");
ADD_PROPERTY(PropertyInfo(Variant::NODE_PATH, "path_node", PROPERTY_HINT_NODE_PATH_VALID_TYPES, "Path"), "set_path_node", "get_path_node");
2021-05-30 19:35:52 +02:00
ADD_PROPERTY(PropertyInfo(Variant::REAL, "path_interval", PROPERTY_HINT_RANGE, "0.1,1.0,0.05"), "set_path_interval", "get_path_interval");
ADD_PROPERTY(PropertyInfo(Variant::INT, "path_rotation", PROPERTY_HINT_ENUM, "Polygon,Path,PathFollow"), "set_path_rotation", "get_path_rotation");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "path_local"), "set_path_local", "is_path_local");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "path_continuous_u"), "set_path_continuous_u", "is_path_continuous_u");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "path_joined"), "set_path_joined", "is_path_joined");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "smooth_faces"), "set_smooth_faces", "get_smooth_faces");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "material", PROPERTY_HINT_RESOURCE_TYPE, "SpatialMaterial,ShaderMaterial"), "set_material", "get_material");
BIND_ENUM_CONSTANT(MODE_DEPTH);
BIND_ENUM_CONSTANT(MODE_SPIN);
BIND_ENUM_CONSTANT(MODE_PATH);
BIND_ENUM_CONSTANT(PATH_ROTATION_POLYGON);
BIND_ENUM_CONSTANT(PATH_ROTATION_PATH);
BIND_ENUM_CONSTANT(PATH_ROTATION_PATH_FOLLOW);
}
void CSGPolygon::set_polygon(const Vector<Vector2> &p_polygon) {
polygon = p_polygon;
_make_dirty();
update_gizmo();
}
Vector<Vector2> CSGPolygon::get_polygon() const {
return polygon;
}
void CSGPolygon::set_mode(Mode p_mode) {
mode = p_mode;
_make_dirty();
update_gizmo();
_change_notify();
}
CSGPolygon::Mode CSGPolygon::get_mode() const {
return mode;
}
void CSGPolygon::set_depth(const float p_depth) {
ERR_FAIL_COND(p_depth < 0.001);
depth = p_depth;
_make_dirty();
update_gizmo();
}
float CSGPolygon::get_depth() const {
return depth;
}
void CSGPolygon::set_path_continuous_u(bool p_enable) {
path_continuous_u = p_enable;
_make_dirty();
}
bool CSGPolygon::is_path_continuous_u() const {
return path_continuous_u;
}
void CSGPolygon::set_spin_degrees(const float p_spin_degrees) {
ERR_FAIL_COND(p_spin_degrees < 0.01 || p_spin_degrees > 360);
spin_degrees = p_spin_degrees;
_make_dirty();
update_gizmo();
}
float CSGPolygon::get_spin_degrees() const {
return spin_degrees;
}
2021-05-30 19:35:52 +02:00
void CSGPolygon::set_spin_sides(int p_spin_sides) {
ERR_FAIL_COND(p_spin_sides < 3);
spin_sides = p_spin_sides;
_make_dirty();
update_gizmo();
}
int CSGPolygon::get_spin_sides() const {
return spin_sides;
}
void CSGPolygon::set_path_node(const NodePath &p_path) {
path_node = p_path;
_make_dirty();
update_gizmo();
}
NodePath CSGPolygon::get_path_node() const {
return path_node;
}
void CSGPolygon::set_path_interval(float p_interval) {
2021-05-30 19:35:52 +02:00
ERR_FAIL_COND_MSG(p_interval <= 0 || p_interval > 1, "Path interval must be greater than 0 and less than or equal to 1.0.");
path_interval = p_interval;
_make_dirty();
update_gizmo();
}
2021-05-30 19:35:52 +02:00
float CSGPolygon::get_path_interval() const {
return path_interval;
}
void CSGPolygon::set_path_rotation(PathRotation p_rotation) {
path_rotation = p_rotation;
_make_dirty();
update_gizmo();
}
CSGPolygon::PathRotation CSGPolygon::get_path_rotation() const {
return path_rotation;
}
void CSGPolygon::set_path_local(bool p_enable) {
path_local = p_enable;
_make_dirty();
update_gizmo();
}
bool CSGPolygon::is_path_local() const {
return path_local;
}
void CSGPolygon::set_path_joined(bool p_enable) {
path_joined = p_enable;
_make_dirty();
update_gizmo();
}
bool CSGPolygon::is_path_joined() const {
return path_joined;
}
void CSGPolygon::set_smooth_faces(const bool p_smooth_faces) {
smooth_faces = p_smooth_faces;
_make_dirty();
}
bool CSGPolygon::get_smooth_faces() const {
return smooth_faces;
}
void CSGPolygon::set_material(const Ref<Material> &p_material) {
material = p_material;
_make_dirty();
}
Ref<Material> CSGPolygon::get_material() const {
return material;
}
bool CSGPolygon::_is_editable_3d_polygon() const {
return true;
}
bool CSGPolygon::_has_editable_3d_polygon_no_depth() const {
return true;
}
CSGPolygon::CSGPolygon() {
// defaults
mode = MODE_DEPTH;
polygon.push_back(Vector2(0, 0));
polygon.push_back(Vector2(0, 1));
polygon.push_back(Vector2(1, 1));
polygon.push_back(Vector2(1, 0));
depth = 1.0;
spin_degrees = 360;
spin_sides = 8;
smooth_faces = false;
2021-05-30 19:35:52 +02:00
path_interval = 1.0;
path_rotation = PATH_ROTATION_PATH_FOLLOW;
path_local = false;
2021-05-30 19:35:52 +02:00
path_continuous_u = true;
path_joined = false;
2021-05-30 19:35:52 +02:00
path = nullptr;
}