virtualx-engine/servers/visual_server.cpp

1573 lines
41 KiB
C++
Raw Normal View History

2014-02-10 02:10:30 +01:00
/*************************************************************************/
/* visual_server.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */
2014-02-10 02:10:30 +01:00
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "visual_server.h"
#include "global_config.h"
#include "method_bind_ext.inc"
2014-02-10 02:10:30 +01:00
VisualServer *VisualServer::singleton = NULL;
VisualServer *(*VisualServer::create_func)() = NULL;
2014-02-10 02:10:30 +01:00
VisualServer *VisualServer::get_singleton() {
return singleton;
}
PoolVector<String> VisualServer::_shader_get_param_list(RID p_shader) const {
2014-02-10 02:10:30 +01:00
//remove at some point
2014-02-10 02:10:30 +01:00
PoolVector<String> pl;
2014-02-10 02:10:30 +01:00
#if 0
List<StringName> params;
shader_get_param_list(p_shader,&params);
for(List<StringName>::Element *E=params.front();E;E=E->next()) {
pl.push_back(E->get());
}
#endif
return pl;
}
VisualServer *VisualServer::create() {
ERR_FAIL_COND_V(singleton, NULL);
2016-03-09 00:00:52 +01:00
2014-02-10 02:10:30 +01:00
if (create_func)
return create_func();
2016-03-09 00:00:52 +01:00
return NULL;
2014-02-10 02:10:30 +01:00
}
RID VisualServer::texture_create_from_image(const Ref<Image> &p_image, uint32_t p_flags) {
2014-02-10 02:10:30 +01:00
ERR_FAIL_COND_V(!p_image.is_valid(), RID());
2014-02-10 02:10:30 +01:00
RID texture = texture_create();
texture_allocate(texture, p_image->get_width(), p_image->get_height(), p_image->get_format(), p_flags); //if it has mipmaps, use, else generate
ERR_FAIL_COND_V(!texture.is_valid(), texture);
2014-02-10 02:10:30 +01:00
texture_set_data(texture, p_image);
2016-03-09 00:00:52 +01:00
2014-02-10 02:10:30 +01:00
return texture;
}
RID VisualServer::get_test_texture() {
if (test_texture.is_valid()) {
2014-02-10 02:10:30 +01:00
return test_texture;
};
#define TEST_TEXTURE_SIZE 256
PoolVector<uint8_t> test_data;
test_data.resize(TEST_TEXTURE_SIZE * TEST_TEXTURE_SIZE * 3);
2014-02-10 02:10:30 +01:00
{
PoolVector<uint8_t>::Write w = test_data.write();
2014-02-10 02:10:30 +01:00
for (int x = 0; x < TEST_TEXTURE_SIZE; x++) {
2014-02-10 02:10:30 +01:00
for (int y = 0; y < TEST_TEXTURE_SIZE; y++) {
2014-02-10 02:10:30 +01:00
Color c;
int r = 255 - (x + y) / 2;
2014-02-10 02:10:30 +01:00
if ((x % (TEST_TEXTURE_SIZE / 8)) < 2 || (y % (TEST_TEXTURE_SIZE / 8)) < 2) {
2014-02-10 02:10:30 +01:00
c.r = y;
c.g = r;
c.b = x;
2014-02-10 02:10:30 +01:00
} else {
2014-02-10 02:10:30 +01:00
c.r = r;
c.g = x;
c.b = y;
}
2014-02-10 02:10:30 +01:00
w[(y * TEST_TEXTURE_SIZE + x) * 3 + 0] = uint8_t(CLAMP(c.r * 255, 0, 255));
w[(y * TEST_TEXTURE_SIZE + x) * 3 + 1] = uint8_t(CLAMP(c.g * 255, 0, 255));
w[(y * TEST_TEXTURE_SIZE + x) * 3 + 2] = uint8_t(CLAMP(c.b * 255, 0, 255));
}
2014-02-10 02:10:30 +01:00
}
}
Ref<Image> data = memnew(Image(TEST_TEXTURE_SIZE, TEST_TEXTURE_SIZE, false, Image::FORMAT_RGB8, test_data));
2014-02-10 02:10:30 +01:00
test_texture = texture_create_from_image(data);
return test_texture;
}
2014-02-10 02:10:30 +01:00
void VisualServer::_free_internal_rids() {
if (test_texture.is_valid())
free(test_texture);
if (white_texture.is_valid())
free(white_texture);
if (test_material.is_valid())
free(test_material);
for (int i = 0; i < 16; i++) {
if (material_2d[i].is_valid())
free(material_2d[i]);
}
}
2014-02-10 02:10:30 +01:00
RID VisualServer::_make_test_cube() {
PoolVector<Vector3> vertices;
PoolVector<Vector3> normals;
PoolVector<float> tangents;
PoolVector<Vector3> uvs;
2016-03-09 00:00:52 +01:00
int vtx_idx = 0;
#define ADD_VTX(m_idx) \
vertices.push_back(face_points[m_idx]); \
normals.push_back(normal_points[m_idx]); \
tangents.push_back(normal_points[m_idx][1]); \
tangents.push_back(normal_points[m_idx][2]); \
tangents.push_back(normal_points[m_idx][0]); \
tangents.push_back(1.0); \
uvs.push_back(Vector3(uv_points[m_idx * 2 + 0], uv_points[m_idx * 2 + 1], 0)); \
vtx_idx++;
2014-02-10 02:10:30 +01:00
for (int i = 0; i < 6; i++) {
2016-03-09 00:00:52 +01:00
2014-02-10 02:10:30 +01:00
Vector3 face_points[4];
Vector3 normal_points[4];
float uv_points[8] = { 0, 0, 0, 1, 1, 1, 1, 0 };
2016-03-09 00:00:52 +01:00
for (int j = 0; j < 4; j++) {
2016-03-09 00:00:52 +01:00
2014-02-10 02:10:30 +01:00
float v[3];
v[0] = 1.0;
v[1] = 1 - 2 * ((j >> 1) & 1);
v[2] = v[1] * (1 - 2 * (j & 1));
2016-03-09 00:00:52 +01:00
for (int k = 0; k < 3; k++) {
2016-03-09 00:00:52 +01:00
if (i < 3)
face_points[j][(i + k) % 3] = v[k] * (i >= 3 ? -1 : 1);
2014-02-10 02:10:30 +01:00
else
face_points[3 - j][(i + k) % 3] = v[k] * (i >= 3 ? -1 : 1);
2014-02-10 02:10:30 +01:00
}
normal_points[j] = Vector3();
normal_points[j][i % 3] = (i >= 3 ? -1 : 1);
2014-02-10 02:10:30 +01:00
}
//tri 1
2014-02-10 02:10:30 +01:00
ADD_VTX(0);
ADD_VTX(1);
ADD_VTX(2);
//tri 2
2014-02-10 02:10:30 +01:00
ADD_VTX(2);
ADD_VTX(3);
ADD_VTX(0);
}
RID test_cube = mesh_create();
Array d;
d.resize(VS::ARRAY_MAX);
d[VisualServer::ARRAY_NORMAL] = normals;
d[VisualServer::ARRAY_TANGENT] = tangents;
d[VisualServer::ARRAY_TEX_UV] = uvs;
d[VisualServer::ARRAY_VERTEX] = vertices;
2014-02-10 02:10:30 +01:00
PoolVector<int> indices;
2014-02-10 02:10:30 +01:00
indices.resize(vertices.size());
for (int i = 0; i < vertices.size(); i++)
indices.set(i, i);
d[VisualServer::ARRAY_INDEX] = indices;
2014-02-10 02:10:30 +01:00
mesh_add_surface_from_arrays(test_cube, PRIMITIVE_TRIANGLES, d);
/*
test_material = fixed_material_create();
2014-02-10 02:10:30 +01:00
//material_set_flag(material, MATERIAL_FLAG_BILLBOARD_TOGGLE,true);
fixed_material_set_texture( test_material, FIXED_MATERIAL_PARAM_DIFFUSE, get_test_texture() );
fixed_material_set_param( test_material, FIXED_MATERIAL_PARAM_SPECULAR_EXP, 70 );
fixed_material_set_param( test_material, FIXED_MATERIAL_PARAM_EMISSION, Color(0.2,0.2,0.2) );
2014-02-10 02:10:30 +01:00
fixed_material_set_param( test_material, FIXED_MATERIAL_PARAM_DIFFUSE, Color(1, 1, 1) );
fixed_material_set_param( test_material, FIXED_MATERIAL_PARAM_SPECULAR, Color(1,1,1) );
*/
mesh_surface_set_material(test_cube, 0, test_material);
2016-03-09 00:00:52 +01:00
2014-02-10 02:10:30 +01:00
return test_cube;
}
RID VisualServer::make_sphere_mesh(int p_lats, int p_lons, float p_radius) {
2016-03-09 00:00:52 +01:00
PoolVector<Vector3> vertices;
PoolVector<Vector3> normals;
2016-03-09 00:00:52 +01:00
for (int i = 1; i <= p_lats; i++) {
double lat0 = Math_PI * (-0.5 + (double)(i - 1) / p_lats);
double z0 = Math::sin(lat0);
double zr0 = Math::cos(lat0);
2016-03-09 00:00:52 +01:00
double lat1 = Math_PI * (-0.5 + (double)i / p_lats);
2014-02-10 02:10:30 +01:00
double z1 = Math::sin(lat1);
double zr1 = Math::cos(lat1);
2016-03-09 00:00:52 +01:00
for (int j = p_lons; j >= 1; j--) {
2016-03-09 00:00:52 +01:00
double lng0 = 2 * Math_PI * (double)(j - 1) / p_lons;
2014-02-10 02:10:30 +01:00
double x0 = Math::cos(lng0);
double y0 = Math::sin(lng0);
2016-03-09 00:00:52 +01:00
double lng1 = 2 * Math_PI * (double)(j) / p_lons;
2016-03-09 00:00:52 +01:00
double x1 = Math::cos(lng1);
2014-02-10 02:10:30 +01:00
double y1 = Math::sin(lng1);
2016-03-09 00:00:52 +01:00
Vector3 v[4] = {
Vector3(x1 * zr0, z0, y1 * zr0),
Vector3(x1 * zr1, z1, y1 * zr1),
Vector3(x0 * zr1, z1, y0 * zr1),
Vector3(x0 * zr0, z0, y0 * zr0)
2014-02-10 02:10:30 +01:00
};
2016-03-09 00:00:52 +01:00
#define ADD_POINT(m_idx) \
normals.push_back(v[m_idx]); \
vertices.push_back(v[m_idx] * p_radius);
2016-03-09 00:00:52 +01:00
2014-02-10 02:10:30 +01:00
ADD_POINT(0);
ADD_POINT(1);
ADD_POINT(2);
2016-03-09 00:00:52 +01:00
2014-02-10 02:10:30 +01:00
ADD_POINT(2);
ADD_POINT(3);
ADD_POINT(0);
}
}
RID mesh = mesh_create();
Array d;
d.resize(VS::ARRAY_MAX);
d[ARRAY_VERTEX] = vertices;
d[ARRAY_NORMAL] = normals;
2014-02-10 02:10:30 +01:00
mesh_add_surface_from_arrays(mesh, PRIMITIVE_TRIANGLES, d);
2014-02-10 02:10:30 +01:00
return mesh;
}
RID VisualServer::material_2d_get(bool p_shaded, bool p_transparent, bool p_cut_alpha, bool p_opaque_prepass) {
int version = 0;
if (p_shaded)
version = 1;
if (p_transparent)
version |= 2;
if (p_cut_alpha)
version |= 4;
if (p_opaque_prepass)
version |= 8;
if (material_2d[version].is_valid())
return material_2d[version];
//not valid, make
/* material_2d[version]=fixed_material_create();
fixed_material_set_flag(material_2d[version],FIXED_MATERIAL_FLAG_USE_ALPHA,p_transparent);
2016-03-09 00:00:52 +01:00
fixed_material_set_flag(material_2d[version],FIXED_MATERIAL_FLAG_USE_COLOR_ARRAY,true);
fixed_material_set_flag(material_2d[version],FIXED_MATERIAL_FLAG_DISCARD_ALPHA,p_cut_alpha);
material_set_flag(material_2d[version],MATERIAL_FLAG_UNSHADED,!p_shaded);
material_set_flag(material_2d[version],MATERIAL_FLAG_DOUBLE_SIDED,true);
material_set_depth_draw_mode(material_2d[version],p_opaque_prepass?MATERIAL_DEPTH_DRAW_OPAQUE_PRE_PASS_ALPHA:MATERIAL_DEPTH_DRAW_OPAQUE_ONLY);
fixed_material_set_texture(material_2d[version],FIXED_MATERIAL_PARAM_DIFFUSE,get_white_texture());
//material cut alpha?*/
return material_2d[version];
}
RID VisualServer::get_white_texture() {
if (white_texture.is_valid())
return white_texture;
PoolVector<uint8_t> wt;
wt.resize(16 * 3);
{
PoolVector<uint8_t>::Write w = wt.write();
for (int i = 0; i < 16 * 3; i++)
w[i] = 255;
}
Ref<Image> white = memnew(Image(4, 4, 0, Image::FORMAT_RGB8, wt));
white_texture = texture_create();
texture_allocate(white_texture, 4, 4, Image::FORMAT_RGB8);
texture_set_data(white_texture, white);
return white_texture;
}
Error VisualServer::_surface_set_data(Array p_arrays, uint32_t p_format, uint32_t *p_offsets, uint32_t p_stride, PoolVector<uint8_t> &r_vertex_array, int p_vertex_array_len, PoolVector<uint8_t> &r_index_array, int p_index_array_len, Rect3 &r_aabb, Vector<Rect3> r_bone_aabb) {
PoolVector<uint8_t>::Write vw = r_vertex_array.write();
PoolVector<uint8_t>::Write iw;
if (r_index_array.size()) {
iw = r_index_array.write();
}
int max_bone = 0;
for (int ai = 0; ai < VS::ARRAY_MAX; ai++) {
if (!(p_format & (1 << ai))) // no array
continue;
switch (ai) {
case VS::ARRAY_VERTEX: {
if (p_format & VS::ARRAY_FLAG_USE_2D_VERTICES) {
PoolVector<Vector2> array = p_arrays[ai];
ERR_FAIL_COND_V(array.size() != p_vertex_array_len, ERR_INVALID_PARAMETER);
PoolVector<Vector2>::Read read = array.read();
const Vector2 *src = read.ptr();
// setting vertices means regenerating the AABB
Rect2 aabb;
if (p_format & ARRAY_COMPRESS_VERTEX) {
for (int i = 0; i < p_vertex_array_len; i++) {
uint16_t vector[2] = { Math::make_half_float(src[i].x), Math::make_half_float(src[i].y) };
copymem(&vw[p_offsets[ai] + i * p_stride], vector, sizeof(uint16_t) * 2);
if (i == 0) {
aabb = Rect2(src[i], Vector2());
} else {
aabb.expand_to(src[i]);
}
}
} else {
for (int i = 0; i < p_vertex_array_len; i++) {
float vector[2] = { src[i].x, src[i].y };
copymem(&vw[p_offsets[ai] + i * p_stride], vector, sizeof(float) * 2);
if (i == 0) {
aabb = Rect2(src[i], Vector2());
} else {
aabb.expand_to(src[i]);
}
}
}
r_aabb = Rect3(Vector3(aabb.position.x, aabb.position.y, 0), Vector3(aabb.size.x, aabb.size.y, 0));
} else {
PoolVector<Vector3> array = p_arrays[ai];
ERR_FAIL_COND_V(array.size() != p_vertex_array_len, ERR_INVALID_PARAMETER);
PoolVector<Vector3>::Read read = array.read();
const Vector3 *src = read.ptr();
// setting vertices means regenerating the AABB
Rect3 aabb;
if (p_format & ARRAY_COMPRESS_VERTEX) {
for (int i = 0; i < p_vertex_array_len; i++) {
uint16_t vector[4] = { Math::make_half_float(src[i].x), Math::make_half_float(src[i].y), Math::make_half_float(src[i].z), Math::make_half_float(1.0) };
copymem(&vw[p_offsets[ai] + i * p_stride], vector, sizeof(uint16_t) * 4);
if (i == 0) {
aabb = Rect3(src[i], Vector3());
} else {
aabb.expand_to(src[i]);
}
}
} else {
for (int i = 0; i < p_vertex_array_len; i++) {
float vector[3] = { src[i].x, src[i].y, src[i].z };
copymem(&vw[p_offsets[ai] + i * p_stride], vector, sizeof(float) * 3);
if (i == 0) {
aabb = Rect3(src[i], Vector3());
} else {
aabb.expand_to(src[i]);
}
}
}
r_aabb = aabb;
}
} break;
case VS::ARRAY_NORMAL: {
ERR_FAIL_COND_V(p_arrays[ai].get_type() != Variant::POOL_VECTOR3_ARRAY, ERR_INVALID_PARAMETER);
PoolVector<Vector3> array = p_arrays[ai];
ERR_FAIL_COND_V(array.size() != p_vertex_array_len, ERR_INVALID_PARAMETER);
PoolVector<Vector3>::Read read = array.read();
const Vector3 *src = read.ptr();
// setting vertices means regenerating the AABB
if (p_format & ARRAY_COMPRESS_NORMAL) {
for (int i = 0; i < p_vertex_array_len; i++) {
uint8_t vector[4] = {
CLAMP(src[i].x * 127, -128, 127),
CLAMP(src[i].y * 127, -128, 127),
CLAMP(src[i].z * 127, -128, 127),
0,
};
copymem(&vw[p_offsets[ai] + i * p_stride], vector, 4);
}
} else {
for (int i = 0; i < p_vertex_array_len; i++) {
float vector[3] = { src[i].x, src[i].y, src[i].z };
copymem(&vw[p_offsets[ai] + i * p_stride], vector, 3 * 4);
}
}
} break;
case VS::ARRAY_TANGENT: {
ERR_FAIL_COND_V(p_arrays[ai].get_type() != Variant::POOL_REAL_ARRAY, ERR_INVALID_PARAMETER);
PoolVector<real_t> array = p_arrays[ai];
ERR_FAIL_COND_V(array.size() != p_vertex_array_len * 4, ERR_INVALID_PARAMETER);
PoolVector<real_t>::Read read = array.read();
const real_t *src = read.ptr();
if (p_format & ARRAY_COMPRESS_TANGENT) {
for (int i = 0; i < p_vertex_array_len; i++) {
uint8_t xyzw[4] = {
CLAMP(src[i * 4 + 0] * 127, -128, 127),
CLAMP(src[i * 4 + 1] * 127, -128, 127),
CLAMP(src[i * 4 + 2] * 127, -128, 127),
CLAMP(src[i * 4 + 3] * 127, -128, 127)
};
copymem(&vw[p_offsets[ai] + i * p_stride], xyzw, 4);
}
} else {
for (int i = 0; i < p_vertex_array_len; i++) {
float xyzw[4] = {
src[i * 4 + 0],
src[i * 4 + 1],
src[i * 4 + 2],
src[i * 4 + 3]
};
copymem(&vw[p_offsets[ai] + i * p_stride], xyzw, 4 * 4);
}
}
} break;
case VS::ARRAY_COLOR: {
ERR_FAIL_COND_V(p_arrays[ai].get_type() != Variant::POOL_COLOR_ARRAY, ERR_INVALID_PARAMETER);
PoolVector<Color> array = p_arrays[ai];
ERR_FAIL_COND_V(array.size() != p_vertex_array_len, ERR_INVALID_PARAMETER);
PoolVector<Color>::Read read = array.read();
const Color *src = read.ptr();
if (p_format & ARRAY_COMPRESS_COLOR) {
for (int i = 0; i < p_vertex_array_len; i++) {
uint8_t colors[4];
for (int j = 0; j < 4; j++) {
colors[j] = CLAMP(int((src[i][j]) * 255.0), 0, 255);
}
copymem(&vw[p_offsets[ai] + i * p_stride], colors, 4);
}
} else {
for (int i = 0; i < p_vertex_array_len; i++) {
copymem(&vw[p_offsets[ai] + i * p_stride], &src[i], 4 * 4);
}
}
} break;
case VS::ARRAY_TEX_UV: {
ERR_FAIL_COND_V(p_arrays[ai].get_type() != Variant::POOL_VECTOR3_ARRAY && p_arrays[ai].get_type() != Variant::POOL_VECTOR2_ARRAY, ERR_INVALID_PARAMETER);
PoolVector<Vector2> array = p_arrays[ai];
ERR_FAIL_COND_V(array.size() != p_vertex_array_len, ERR_INVALID_PARAMETER);
PoolVector<Vector2>::Read read = array.read();
const Vector2 *src = read.ptr();
if (p_format & ARRAY_COMPRESS_TEX_UV) {
for (int i = 0; i < p_vertex_array_len; i++) {
uint16_t uv[2] = { Math::make_half_float(src[i].x), Math::make_half_float(src[i].y) };
copymem(&vw[p_offsets[ai] + i * p_stride], uv, 2 * 2);
}
} else {
for (int i = 0; i < p_vertex_array_len; i++) {
float uv[2] = { src[i].x, src[i].y };
copymem(&vw[p_offsets[ai] + i * p_stride], uv, 2 * 4);
}
}
} break;
case VS::ARRAY_TEX_UV2: {
ERR_FAIL_COND_V(p_arrays[ai].get_type() != Variant::POOL_VECTOR3_ARRAY && p_arrays[ai].get_type() != Variant::POOL_VECTOR2_ARRAY, ERR_INVALID_PARAMETER);
PoolVector<Vector2> array = p_arrays[ai];
ERR_FAIL_COND_V(array.size() != p_vertex_array_len, ERR_INVALID_PARAMETER);
PoolVector<Vector2>::Read read = array.read();
const Vector2 *src = read.ptr();
if (p_format & ARRAY_COMPRESS_TEX_UV2) {
for (int i = 0; i < p_vertex_array_len; i++) {
uint16_t uv[2] = { Math::make_half_float(src[i].x), Math::make_half_float(src[i].y) };
copymem(&vw[p_offsets[ai] + i * p_stride], uv, 2 * 2);
}
} else {
for (int i = 0; i < p_vertex_array_len; i++) {
float uv[2] = { src[i].x, src[i].y };
copymem(&vw[p_offsets[ai] + i * p_stride], uv, 2 * 4);
}
}
} break;
case VS::ARRAY_WEIGHTS: {
ERR_FAIL_COND_V(p_arrays[ai].get_type() != Variant::POOL_REAL_ARRAY, ERR_INVALID_PARAMETER);
PoolVector<real_t> array = p_arrays[ai];
ERR_FAIL_COND_V(array.size() != p_vertex_array_len * VS::ARRAY_WEIGHTS_SIZE, ERR_INVALID_PARAMETER);
PoolVector<real_t>::Read read = array.read();
const real_t *src = read.ptr();
if (p_format & ARRAY_COMPRESS_WEIGHTS) {
for (int i = 0; i < p_vertex_array_len; i++) {
uint16_t data[VS::ARRAY_WEIGHTS_SIZE];
for (int j = 0; j < VS::ARRAY_WEIGHTS_SIZE; j++) {
data[j] = CLAMP(src[i * VS::ARRAY_WEIGHTS_SIZE + j] * 65535, 0, 65535);
}
copymem(&vw[p_offsets[ai] + i * p_stride], data, 2 * 4);
}
} else {
for (int i = 0; i < p_vertex_array_len; i++) {
float data[VS::ARRAY_WEIGHTS_SIZE];
for (int j = 0; j < VS::ARRAY_WEIGHTS_SIZE; j++) {
data[j] = src[i * VS::ARRAY_WEIGHTS_SIZE + j];
}
copymem(&vw[p_offsets[ai] + i * p_stride], data, 4 * 4);
}
}
} break;
case VS::ARRAY_BONES: {
ERR_FAIL_COND_V(p_arrays[ai].get_type() != Variant::POOL_INT_ARRAY && p_arrays[ai].get_type() != Variant::POOL_REAL_ARRAY, ERR_INVALID_PARAMETER);
PoolVector<int> array = p_arrays[ai];
ERR_FAIL_COND_V(array.size() != p_vertex_array_len * VS::ARRAY_WEIGHTS_SIZE, ERR_INVALID_PARAMETER);
PoolVector<int>::Read read = array.read();
const int *src = read.ptr();
if (!(p_format & ARRAY_FLAG_USE_16_BIT_BONES)) {
for (int i = 0; i < p_vertex_array_len; i++) {
uint8_t data[VS::ARRAY_WEIGHTS_SIZE];
for (int j = 0; j < VS::ARRAY_WEIGHTS_SIZE; j++) {
data[j] = CLAMP(src[i * VS::ARRAY_WEIGHTS_SIZE + j], 0, 255);
max_bone = MAX(data[j], max_bone);
}
copymem(&vw[p_offsets[ai] + i * p_stride], data, 4);
}
} else {
for (int i = 0; i < p_vertex_array_len; i++) {
uint16_t data[VS::ARRAY_WEIGHTS_SIZE];
for (int j = 0; j < VS::ARRAY_WEIGHTS_SIZE; j++) {
data[j] = src[i * VS::ARRAY_WEIGHTS_SIZE + j];
max_bone = MAX(data[j], max_bone);
}
copymem(&vw[p_offsets[ai] + i * p_stride], data, 2 * 4);
}
}
} break;
case VS::ARRAY_INDEX: {
ERR_FAIL_COND_V(p_index_array_len <= 0, ERR_INVALID_DATA);
ERR_FAIL_COND_V(p_arrays[ai].get_type() != Variant::POOL_INT_ARRAY, ERR_INVALID_PARAMETER);
PoolVector<int> indices = p_arrays[ai];
ERR_FAIL_COND_V(indices.size() == 0, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(indices.size() != p_index_array_len, ERR_INVALID_PARAMETER);
/* determine wether using 16 or 32 bits indices */
PoolVector<int>::Read read = indices.read();
const int *src = read.ptr();
for (int i = 0; i < p_index_array_len; i++) {
if (p_vertex_array_len < (1 << 16)) {
uint16_t v = src[i];
copymem(&iw[i * 2], &v, 2);
} else {
uint32_t v = src[i];
copymem(&iw[i * 4], &v, 4);
}
}
} break;
default: {
ERR_FAIL_V(ERR_INVALID_DATA);
}
}
}
if (p_format & VS::ARRAY_FORMAT_BONES) {
//create AABBs for each detected bone
int total_bones = max_bone + 1;
bool first = r_bone_aabb.size() == 0;
r_bone_aabb.resize(total_bones);
if (first) {
for (int i = 0; i < total_bones; i++) {
r_bone_aabb[i].size == Vector3(-1, -1, -1); //negative means unused
}
}
PoolVector<Vector3> vertices = p_arrays[VS::ARRAY_VERTEX];
PoolVector<int> bones = p_arrays[VS::ARRAY_BONES];
PoolVector<float> weights = p_arrays[VS::ARRAY_WEIGHTS];
bool any_valid = false;
if (vertices.size() && bones.size() == vertices.size() * 4 && weights.size() == bones.size()) {
int vs = vertices.size();
PoolVector<Vector3>::Read rv = vertices.read();
PoolVector<int>::Read rb = bones.read();
PoolVector<float>::Read rw = weights.read();
Rect3 *bptr = r_bone_aabb.ptr();
for (int i = 0; i < vs; i++) {
Vector3 v = rv[i];
for (int j = 0; j < 4; j++) {
int idx = rb[i * 4 + j];
float w = rw[i * 4 + j];
if (w == 0)
continue; //break;
ERR_FAIL_INDEX_V(idx, total_bones, ERR_INVALID_DATA);
if (bptr->size.x < 0) {
//first
bptr[idx] = Rect3();
bptr[idx].position = v;
any_valid = true;
} else {
bptr[idx].expand_to(v);
}
}
}
}
if (!any_valid && first) {
r_bone_aabb.clear();
}
}
return OK;
}
void VisualServer::mesh_add_surface_from_arrays(RID p_mesh, PrimitiveType p_primitive, const Array &p_arrays, const Array &p_blend_shapes, uint32_t p_compress_format) {
ERR_FAIL_INDEX(p_primitive, VS::PRIMITIVE_MAX);
ERR_FAIL_COND(p_arrays.size() != VS::ARRAY_MAX);
uint32_t format = 0;
// validation
int index_array_len = 0;
int array_len = 0;
for (int i = 0; i < p_arrays.size(); i++) {
if (p_arrays[i].get_type() == Variant::NIL)
continue;
format |= (1 << i);
if (i == VS::ARRAY_VERTEX) {
Variant var = p_arrays[i];
switch (var.get_type()) {
case Variant::POOL_VECTOR2_ARRAY: {
PoolVector<Vector2> v2 = var;
array_len = v2.size();
} break;
case Variant::POOL_VECTOR3_ARRAY: {
PoolVector<Vector3> v3 = var;
array_len = v3.size();
} break;
default: {
Array v = var;
array_len = v.size();
} break;
}
array_len = PoolVector3Array(p_arrays[i]).size();
ERR_FAIL_COND(array_len == 0);
} else if (i == VS::ARRAY_INDEX) {
index_array_len = PoolIntArray(p_arrays[i]).size();
}
}
ERR_FAIL_COND((format & VS::ARRAY_FORMAT_VERTEX) == 0); // mandatory
if (p_blend_shapes.size()) {
//validate format for morphs
for (int i = 0; i < p_blend_shapes.size(); i++) {
uint32_t bsformat = 0;
Array arr = p_blend_shapes[i];
for (int j = 0; j < arr.size(); j++) {
if (arr[j].get_type() != Variant::NIL)
bsformat |= (1 << j);
}
ERR_FAIL_COND((bsformat) != (format & (VS::ARRAY_FORMAT_INDEX - 1)));
}
}
uint32_t offsets[VS::ARRAY_MAX];
int total_elem_size = 0;
for (int i = 0; i < VS::ARRAY_MAX; i++) {
offsets[i] = 0; //reset
if (!(format & (1 << i))) // no array
continue;
int elem_size = 0;
switch (i) {
case VS::ARRAY_VERTEX: {
Variant arr = p_arrays[0];
if (arr.get_type() == Variant::POOL_VECTOR2_ARRAY) {
elem_size = 2;
p_compress_format |= ARRAY_FLAG_USE_2D_VERTICES;
} else if (arr.get_type() == Variant::POOL_VECTOR3_ARRAY) {
p_compress_format &= ~ARRAY_FLAG_USE_2D_VERTICES;
elem_size = 3;
} else {
elem_size = (p_compress_format & ARRAY_FLAG_USE_2D_VERTICES) ? 2 : 3;
}
if (p_compress_format & ARRAY_COMPRESS_VERTEX) {
elem_size *= sizeof(int16_t);
} else {
elem_size *= sizeof(float);
}
if (elem_size == 6) {
//had to pad
elem_size = 8;
}
} break;
case VS::ARRAY_NORMAL: {
if (p_compress_format & ARRAY_COMPRESS_NORMAL) {
elem_size = sizeof(uint32_t);
} else {
elem_size = sizeof(float) * 3;
}
} break;
case VS::ARRAY_TANGENT: {
if (p_compress_format & ARRAY_COMPRESS_TANGENT) {
elem_size = sizeof(uint32_t);
} else {
elem_size = sizeof(float) * 4;
}
} break;
case VS::ARRAY_COLOR: {
if (p_compress_format & ARRAY_COMPRESS_COLOR) {
elem_size = sizeof(uint32_t);
} else {
elem_size = sizeof(float) * 4;
}
} break;
case VS::ARRAY_TEX_UV: {
if (p_compress_format & ARRAY_COMPRESS_TEX_UV) {
elem_size = sizeof(uint32_t);
} else {
elem_size = sizeof(float) * 2;
}
} break;
case VS::ARRAY_TEX_UV2: {
if (p_compress_format & ARRAY_COMPRESS_TEX_UV2) {
elem_size = sizeof(uint32_t);
} else {
elem_size = sizeof(float) * 2;
}
} break;
case VS::ARRAY_WEIGHTS: {
if (p_compress_format & ARRAY_COMPRESS_WEIGHTS) {
elem_size = sizeof(uint16_t) * 4;
} else {
elem_size = sizeof(float) * 4;
}
} break;
case VS::ARRAY_BONES: {
PoolVector<int> bones = p_arrays[VS::ARRAY_BONES];
int max_bone = 0;
2016-11-21 23:03:39 +01:00
{
int bc = bones.size();
PoolVector<int>::Read r = bones.read();
for (int j = 0; j < bc; j++) {
max_bone = MAX(r[j], max_bone);
2016-11-21 23:03:39 +01:00
}
}
if (max_bone > 255) {
p_compress_format |= ARRAY_FLAG_USE_16_BIT_BONES;
elem_size = sizeof(uint16_t) * 4;
2016-11-21 23:03:39 +01:00
} else {
p_compress_format &= ~ARRAY_FLAG_USE_16_BIT_BONES;
elem_size = sizeof(uint32_t);
}
} break;
case VS::ARRAY_INDEX: {
if (index_array_len <= 0) {
ERR_PRINT("index_array_len==NO_INDEX_ARRAY");
break;
}
/* determine wether using 16 or 32 bits indices */
if (array_len >= (1 << 16)) {
elem_size = 4;
} else {
elem_size = 2;
}
offsets[i] = elem_size;
continue;
} break;
default: {
ERR_FAIL();
}
}
offsets[i] = total_elem_size;
total_elem_size += elem_size;
}
uint32_t mask = (1 << ARRAY_MAX) - 1;
format |= (~mask) & p_compress_format; //make the full format
int array_size = total_elem_size * array_len;
PoolVector<uint8_t> vertex_array;
vertex_array.resize(array_size);
int index_array_size = offsets[VS::ARRAY_INDEX] * index_array_len;
PoolVector<uint8_t> index_array;
index_array.resize(index_array_size);
Rect3 aabb;
Vector<Rect3> bone_aabb;
Error err = _surface_set_data(p_arrays, format, offsets, total_elem_size, vertex_array, array_len, index_array, index_array_len, aabb, bone_aabb);
if (err) {
ERR_EXPLAIN("Invalid array format for surface");
ERR_FAIL_COND(err != OK);
}
Vector<PoolVector<uint8_t> > blend_shape_data;
for (int i = 0; i < p_blend_shapes.size(); i++) {
PoolVector<uint8_t> vertex_array_shape;
vertex_array_shape.resize(array_size);
PoolVector<uint8_t> noindex;
Rect3 laabb;
Error err = _surface_set_data(p_blend_shapes[i], format & ~ARRAY_FORMAT_INDEX, offsets, total_elem_size, vertex_array_shape, array_len, noindex, 0, laabb, bone_aabb);
aabb.merge_with(laabb);
if (err) {
ERR_EXPLAIN("Invalid blend shape array format for surface");
ERR_FAIL_COND(err != OK);
}
blend_shape_data.push_back(vertex_array_shape);
}
mesh_add_surface(p_mesh, format, p_primitive, vertex_array, array_len, index_array, index_array_len, aabb, blend_shape_data, bone_aabb);
}
Array VisualServer::_get_array_from_surface(uint32_t p_format, PoolVector<uint8_t> p_vertex_data, int p_vertex_len, PoolVector<uint8_t> p_index_data, int p_index_len) const {
uint32_t offsets[ARRAY_MAX];
int total_elem_size = 0;
for (int i = 0; i < VS::ARRAY_MAX; i++) {
offsets[i] = 0; //reset
if (!(p_format & (1 << i))) // no array
continue;
int elem_size = 0;
switch (i) {
case VS::ARRAY_VERTEX: {
if (p_format & ARRAY_FLAG_USE_2D_VERTICES) {
elem_size = 2;
} else {
elem_size = 3;
}
if (p_format & ARRAY_COMPRESS_VERTEX) {
elem_size *= sizeof(int16_t);
} else {
elem_size *= sizeof(float);
}
if (elem_size == 6) {
elem_size = 8;
}
} break;
case VS::ARRAY_NORMAL: {
if (p_format & ARRAY_COMPRESS_NORMAL) {
elem_size = sizeof(uint32_t);
} else {
elem_size = sizeof(float) * 3;
}
} break;
case VS::ARRAY_TANGENT: {
if (p_format & ARRAY_COMPRESS_TANGENT) {
elem_size = sizeof(uint32_t);
} else {
elem_size = sizeof(float) * 4;
}
} break;
case VS::ARRAY_COLOR: {
if (p_format & ARRAY_COMPRESS_COLOR) {
elem_size = sizeof(uint32_t);
} else {
elem_size = sizeof(float) * 4;
}
} break;
case VS::ARRAY_TEX_UV: {
if (p_format & ARRAY_COMPRESS_TEX_UV) {
elem_size = sizeof(uint32_t);
} else {
elem_size = sizeof(float) * 2;
}
} break;
case VS::ARRAY_TEX_UV2: {
if (p_format & ARRAY_COMPRESS_TEX_UV2) {
elem_size = sizeof(uint32_t);
} else {
elem_size = sizeof(float) * 2;
}
} break;
case VS::ARRAY_WEIGHTS: {
if (p_format & ARRAY_COMPRESS_WEIGHTS) {
elem_size = sizeof(uint16_t) * 4;
} else {
elem_size = sizeof(float) * 4;
}
} break;
case VS::ARRAY_BONES: {
if (p_format & ARRAY_FLAG_USE_16_BIT_BONES) {
elem_size = sizeof(uint16_t) * 4;
} else {
elem_size = sizeof(uint32_t);
}
} break;
case VS::ARRAY_INDEX: {
if (p_index_len <= 0) {
ERR_PRINT("index_array_len==NO_INDEX_ARRAY");
break;
}
/* determine wether using 16 or 32 bits indices */
if (p_vertex_len >= (1 << 16)) {
elem_size = 4;
} else {
elem_size = 2;
}
offsets[i] = elem_size;
continue;
} break;
default: {
ERR_FAIL_V(Array());
}
}
offsets[i] = total_elem_size;
total_elem_size += elem_size;
}
Array ret;
ret.resize(VS::ARRAY_MAX);
PoolVector<uint8_t>::Read r = p_vertex_data.read();
for (int i = 0; i < VS::ARRAY_MAX; i++) {
if (!(p_format & (1 << i)))
continue;
switch (i) {
case VS::ARRAY_VERTEX: {
if (p_format & ARRAY_FLAG_USE_2D_VERTICES) {
PoolVector<Vector2> arr_2d;
arr_2d.resize(p_vertex_len);
if (p_format & ARRAY_COMPRESS_VERTEX) {
PoolVector<Vector2>::Write w = arr_2d.write();
for (int j = 0; j < p_vertex_len; j++) {
const uint16_t *v = (const uint16_t *)&r[j * total_elem_size + offsets[i]];
w[j] = Vector2(Math::halfptr_to_float(&v[0]), Math::halfptr_to_float(&v[1]));
}
} else {
PoolVector<Vector2>::Write w = arr_2d.write();
for (int j = 0; j < p_vertex_len; j++) {
const float *v = (const float *)&r[j * total_elem_size + offsets[i]];
w[j] = Vector2(v[0], v[1]);
}
}
ret[i] = arr_2d;
} else {
PoolVector<Vector3> arr_3d;
arr_3d.resize(p_vertex_len);
if (p_format & ARRAY_COMPRESS_VERTEX) {
PoolVector<Vector3>::Write w = arr_3d.write();
for (int j = 0; j < p_vertex_len; j++) {
const uint16_t *v = (const uint16_t *)&r[j * total_elem_size + offsets[i]];
w[j] = Vector3(Math::halfptr_to_float(&v[0]), Math::halfptr_to_float(&v[1]), Math::halfptr_to_float(&v[2]));
}
} else {
PoolVector<Vector3>::Write w = arr_3d.write();
for (int j = 0; j < p_vertex_len; j++) {
const float *v = (const float *)&r[j * total_elem_size + offsets[i]];
w[j] = Vector3(v[0], v[1], v[2]);
}
}
ret[i] = arr_3d;
}
} break;
case VS::ARRAY_NORMAL: {
PoolVector<Vector3> arr;
arr.resize(p_vertex_len);
if (p_format & ARRAY_COMPRESS_NORMAL) {
PoolVector<Vector3>::Write w = arr.write();
for (int j = 0; j < p_vertex_len; j++) {
const uint8_t *v = (const uint8_t *)&r[j * total_elem_size + offsets[i]];
w[j] = Vector3(float(v[0] / 255.0) * 2.0 - 1.0, float(v[1] / 255.0) * 2.0 - 1.0, float(v[2] / 255.0) * 2.0 - 1.0);
}
} else {
PoolVector<Vector3>::Write w = arr.write();
for (int j = 0; j < p_vertex_len; j++) {
const float *v = (const float *)&r[j * total_elem_size + offsets[i]];
w[j] = Vector3(v[0], v[1], v[2]);
}
}
ret[i] = arr;
} break;
case VS::ARRAY_TANGENT: {
PoolVector<float> arr;
arr.resize(p_vertex_len * 4);
if (p_format & ARRAY_COMPRESS_TANGENT) {
PoolVector<float>::Write w = arr.write();
for (int j = 0; j < p_vertex_len; j++) {
const uint8_t *v = (const uint8_t *)&r[j * total_elem_size + offsets[i]];
for (int k = 0; k < 4; k++) {
w[j * 4 + k] = float(v[k] / 255.0) * 2.0 - 1.0;
}
}
} else {
PoolVector<float>::Write w = arr.write();
for (int j = 0; j < p_vertex_len; j++) {
const float *v = (const float *)&r[j * total_elem_size + offsets[i]];
for (int k = 0; k < 4; k++) {
w[j * 4 + k] = v[k];
}
}
}
ret[i] = arr;
} break;
case VS::ARRAY_COLOR: {
PoolVector<Color> arr;
arr.resize(p_vertex_len);
if (p_format & ARRAY_COMPRESS_COLOR) {
PoolVector<Color>::Write w = arr.write();
for (int j = 0; j < p_vertex_len; j++) {
const uint8_t *v = (const uint8_t *)&r[j * total_elem_size + offsets[i]];
w[j] = Color(float(v[0] / 255.0) * 2.0 - 1.0, float(v[1] / 255.0) * 2.0 - 1.0, float(v[2] / 255.0) * 2.0 - 1.0, float(v[3] / 255.0) * 2.0 - 1.0);
}
} else {
PoolVector<Color>::Write w = arr.write();
for (int j = 0; j < p_vertex_len; j++) {
const float *v = (const float *)&r[j * total_elem_size + offsets[i]];
w[j] = Color(v[0], v[1], v[2], v[3]);
}
}
ret[i] = arr;
} break;
case VS::ARRAY_TEX_UV: {
PoolVector<Vector2> arr;
arr.resize(p_vertex_len);
if (p_format & ARRAY_COMPRESS_TEX_UV) {
PoolVector<Vector2>::Write w = arr.write();
for (int j = 0; j < p_vertex_len; j++) {
const uint16_t *v = (const uint16_t *)&r[j * total_elem_size + offsets[i]];
w[j] = Vector2(Math::halfptr_to_float(&v[0]), Math::halfptr_to_float(&v[1]));
}
} else {
PoolVector<Vector2>::Write w = arr.write();
for (int j = 0; j < p_vertex_len; j++) {
const float *v = (const float *)&r[j * total_elem_size + offsets[i]];
w[j] = Vector2(v[0], v[1]);
}
}
ret[i] = arr;
} break;
case VS::ARRAY_TEX_UV2: {
PoolVector<Vector2> arr;
arr.resize(p_vertex_len);
if (p_format & ARRAY_COMPRESS_TEX_UV2) {
PoolVector<Vector2>::Write w = arr.write();
for (int j = 0; j < p_vertex_len; j++) {
const uint16_t *v = (const uint16_t *)&r[j * total_elem_size + offsets[i]];
w[j] = Vector2(Math::halfptr_to_float(&v[0]), Math::halfptr_to_float(&v[1]));
}
} else {
PoolVector<Vector2>::Write w = arr.write();
for (int j = 0; j < p_vertex_len; j++) {
const float *v = (const float *)&r[j * total_elem_size + offsets[i]];
w[j] = Vector2(v[0], v[1]);
}
}
ret[i] = arr;
} break;
case VS::ARRAY_WEIGHTS: {
PoolVector<float> arr;
arr.resize(p_vertex_len * 4);
if (p_format & ARRAY_COMPRESS_WEIGHTS) {
PoolVector<float>::Write w = arr.write();
for (int j = 0; j < p_vertex_len; j++) {
const uint16_t *v = (const uint16_t *)&r[j * total_elem_size + offsets[i]];
for (int k = 0; k < 4; k++) {
w[j * 4 + k] = float(v[k] / 65535.0) * 2.0 - 1.0;
}
}
} else {
PoolVector<float>::Write w = arr.write();
for (int j = 0; j < p_vertex_len; j++) {
const float *v = (const float *)&r[j * total_elem_size + offsets[i]];
for (int k = 0; k < 4; k++) {
w[j * 4 + k] = v[k];
}
}
}
ret[i] = arr;
} break;
case VS::ARRAY_BONES: {
PoolVector<int> arr;
arr.resize(p_vertex_len * 4);
if (p_format & ARRAY_FLAG_USE_16_BIT_BONES) {
PoolVector<int>::Write w = arr.write();
for (int j = 0; j < p_vertex_len; j++) {
const uint16_t *v = (const uint16_t *)&r[j * total_elem_size + offsets[i]];
for (int k = 0; k < 4; k++) {
w[j * 4 + k] = v[k];
}
}
} else {
PoolVector<int>::Write w = arr.write();
for (int j = 0; j < p_vertex_len; j++) {
const uint8_t *v = (const uint8_t *)&r[j * total_elem_size + offsets[i]];
for (int k = 0; k < 4; k++) {
w[j * 4 + k] = v[k];
}
}
}
ret[i] = arr;
} break;
case VS::ARRAY_INDEX: {
/* determine wether using 16 or 32 bits indices */
PoolVector<uint8_t>::Read ir = p_index_data.read();
PoolVector<int> arr;
arr.resize(p_index_len);
if (p_vertex_len < (1 << 16)) {
PoolVector<int>::Write w = arr.write();
for (int j = 0; j < p_index_len; j++) {
const uint16_t *v = (const uint16_t *)&ir[j * 2];
w[j] = *v;
}
} else {
PoolVector<int>::Write w = arr.write();
for (int j = 0; j < p_index_len; j++) {
const int *v = (const int *)&ir[j * 4];
w[j] = *v;
}
}
ret[i] = arr;
} break;
default: {
ERR_FAIL_V(ret);
}
}
}
return ret;
}
Array VisualServer::mesh_surface_get_arrays(RID p_mesh, int p_surface) const {
PoolVector<uint8_t> vertex_data = mesh_surface_get_array(p_mesh, p_surface);
ERR_FAIL_COND_V(vertex_data.size() == 0, Array());
int vertex_len = mesh_surface_get_array_len(p_mesh, p_surface);
PoolVector<uint8_t> index_data = mesh_surface_get_index_array(p_mesh, p_surface);
int index_len = mesh_surface_get_array_index_len(p_mesh, p_surface);
uint32_t format = mesh_surface_get_format(p_mesh, p_surface);
return _get_array_from_surface(format, vertex_data, vertex_len, index_data, index_len);
}
2014-02-10 02:10:30 +01:00
void VisualServer::_bind_methods() {
ClassDB::bind_method(D_METHOD("texture_create"), &VisualServer::texture_create);
ClassDB::bind_method(D_METHOD("texture_create_from_image"), &VisualServer::texture_create_from_image, DEFVAL(TEXTURE_FLAGS_DEFAULT));
//ClassDB::bind_method(D_METHOD("texture_allocate"),&VisualServer::texture_allocate,DEFVAL( TEXTURE_FLAGS_DEFAULT ) );
//ClassDB::bind_method(D_METHOD("texture_set_data"),&VisualServer::texture_blit_rect,DEFVAL( CUBEMAP_LEFT ) );
//ClassDB::bind_method(D_METHOD("texture_get_rect"),&VisualServer::texture_get_rect );
ClassDB::bind_method(D_METHOD("texture_set_flags"), &VisualServer::texture_set_flags);
ClassDB::bind_method(D_METHOD("texture_get_flags"), &VisualServer::texture_get_flags);
ClassDB::bind_method(D_METHOD("texture_get_width"), &VisualServer::texture_get_width);
ClassDB::bind_method(D_METHOD("texture_get_height"), &VisualServer::texture_get_height);
2014-02-10 02:10:30 +01:00
ClassDB::bind_method(D_METHOD("texture_set_shrink_all_x2_on_set_data", "shrink"), &VisualServer::texture_set_shrink_all_x2_on_set_data);
2014-02-10 02:10:30 +01:00
}
void VisualServer::_canvas_item_add_style_box(RID p_item, const Rect2 &p_rect, const Rect2 &p_source, RID p_texture, const Vector<float> &p_margins, const Color &p_modulate) {
2014-02-10 02:10:30 +01:00
ERR_FAIL_COND(p_margins.size() != 4);
//canvas_item_add_style_box(p_item,p_rect,p_source,p_texture,Vector2(p_margins[0],p_margins[1]),Vector2(p_margins[2],p_margins[3]),true,p_modulate);
2014-02-10 02:10:30 +01:00
}
void VisualServer::_camera_set_orthogonal(RID p_camera, float p_size, float p_z_near, float p_z_far) {
2014-02-10 02:10:30 +01:00
camera_set_orthogonal(p_camera, p_size, p_z_near, p_z_far);
2014-02-10 02:10:30 +01:00
}
void VisualServer::mesh_add_surface_from_mesh_data(RID p_mesh, const Geometry::MeshData &p_mesh_data) {
2014-02-10 02:10:30 +01:00
#if 1
PoolVector<Vector3> vertices;
PoolVector<Vector3> normals;
2016-03-09 00:00:52 +01:00
for (int i = 0; i < p_mesh_data.faces.size(); i++) {
2016-03-09 00:00:52 +01:00
const Geometry::MeshData::Face &f = p_mesh_data.faces[i];
2016-03-09 00:00:52 +01:00
for (int j = 2; j < f.indices.size(); j++) {
2016-03-09 00:00:52 +01:00
#define _ADD_VERTEX(m_idx) \
vertices.push_back(p_mesh_data.vertices[f.indices[m_idx]]); \
normals.push_back(f.plane.normal);
2016-03-09 00:00:52 +01:00
_ADD_VERTEX(0);
_ADD_VERTEX(j - 1);
_ADD_VERTEX(j);
2016-03-09 00:00:52 +01:00
}
2014-02-10 02:10:30 +01:00
}
2016-03-09 00:00:52 +01:00
2014-02-10 02:10:30 +01:00
Array d;
d.resize(VS::ARRAY_MAX);
d[ARRAY_VERTEX] = vertices;
d[ARRAY_NORMAL] = normals;
mesh_add_surface_from_arrays(p_mesh, PRIMITIVE_TRIANGLES, d);
2014-02-10 02:10:30 +01:00
#else
PoolVector<Vector3> vertices;
2014-02-10 02:10:30 +01:00
for (int i = 0; i < p_mesh_data.edges.size(); i++) {
2014-02-10 02:10:30 +01:00
const Geometry::MeshData::Edge &f = p_mesh_data.edges[i];
vertices.push_back(p_mesh_data.vertices[f.a]);
vertices.push_back(p_mesh_data.vertices[f.b]);
2014-02-10 02:10:30 +01:00
}
Array d;
d.resize(VS::ARRAY_MAX);
d[ARRAY_VERTEX] = vertices;
mesh_add_surface(p_mesh, PRIMITIVE_LINES, d);
2014-02-10 02:10:30 +01:00
#endif
}
void VisualServer::mesh_add_surface_from_planes(RID p_mesh, const PoolVector<Plane> &p_planes) {
2014-02-10 02:10:30 +01:00
Geometry::MeshData mdata = Geometry::build_convex_mesh(p_planes);
mesh_add_surface_from_mesh_data(p_mesh, mdata);
2014-02-10 02:10:30 +01:00
}
void VisualServer::immediate_vertex_2d(RID p_immediate, const Vector2 &p_vertex) {
immediate_vertex(p_immediate, Vector3(p_vertex.x, p_vertex.y, 0));
}
2014-02-10 02:10:30 +01:00
RID VisualServer::instance_create2(RID p_base, RID p_scenario) {
RID instance = instance_create();
instance_set_base(instance, p_base);
instance_set_scenario(instance, p_scenario);
2014-02-10 02:10:30 +01:00
return instance;
}
VisualServer::VisualServer() {
//ERR_FAIL_COND(singleton);
singleton = this;
2014-02-10 02:10:30 +01:00
}
VisualServer::~VisualServer() {
singleton = NULL;
2014-02-10 02:10:30 +01:00
}