virtualx-engine/servers/physics_2d/space_2d_sw.cpp

623 lines
18 KiB
C++
Raw Normal View History

2014-02-10 02:10:30 +01:00
/*************************************************************************/
/* space_2d_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "space_2d_sw.h"
#include "collision_solver_2d_sw.h"
#include "physics_2d_server_sw.h"
bool Physics2DDirectSpaceStateSW::intersect_ray(const Vector2& p_from, const Vector2& p_to,RayResult &r_result,const Set<RID>& p_exclude,uint32_t p_user_mask) {
ERR_FAIL_COND_V(space->locked,false);
Vector2 begin,end;
Vector2 normal;
begin=p_from;
end=p_to;
normal=(end-begin).normalized();
int amount = space->broadphase->cull_segment(begin,end,space->intersection_query_results,Space2DSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results);
//todo, create another array tha references results, compute AABBs and check closest point to ray origin, sort, and stop evaluating results when beyond first collision
bool collided=false;
Vector2 res_point,res_normal;
int res_shape;
const CollisionObject2DSW *res_obj;
real_t min_d=1e10;
for(int i=0;i<amount;i++) {
if (space->intersection_query_results[i]->get_type()==CollisionObject2DSW::TYPE_AREA)
continue; //ignore area
if (p_exclude.has( space->intersection_query_results[i]->get_self()))
continue;
const CollisionObject2DSW *col_obj=space->intersection_query_results[i];
int shape_idx=space->intersection_query_subindex_results[i];
Matrix32 inv_xform = col_obj->get_shape_inv_transform(shape_idx) * col_obj->get_inv_transform();
Vector2 local_from = inv_xform.xform(begin);
Vector2 local_to = inv_xform.xform(end);
/*local_from = col_obj->get_inv_transform().xform(begin);
local_from = col_obj->get_shape_inv_transform(shape_idx).xform(local_from);
local_to = col_obj->get_inv_transform().xform(end);
local_to = col_obj->get_shape_inv_transform(shape_idx).xform(local_to);*/
const Shape2DSW *shape = col_obj->get_shape(shape_idx);
Vector2 shape_point,shape_normal;
if (shape->intersect_segment(local_from,local_to,shape_point,shape_normal)) {
//print_line("inters sgment!");
Matrix32 xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
shape_point=xform.xform(shape_point);
real_t ld = normal.dot(shape_point);
if (ld<min_d) {
min_d=ld;
res_point=shape_point;
res_normal=inv_xform.basis_xform_inv(shape_normal).normalized();
res_shape=shape_idx;
res_obj=col_obj;
collided=true;
}
}
}
if (!collided)
return false;
r_result.collider_id=res_obj->get_instance_id();
if (r_result.collider_id!=0)
r_result.collider=ObjectDB::get_instance(r_result.collider_id);
r_result.normal=res_normal;
r_result.position=res_point;
r_result.rid=res_obj->get_self();
r_result.shape=res_shape;
return true;
}
int Physics2DDirectSpaceStateSW::intersect_shape(const RID& p_shape, const Matrix32& p_xform,const Vector2& p_motion,ShapeResult *r_results,int p_result_max,const Set<RID>& p_exclude,uint32_t p_user_mask) {
if (p_result_max<=0)
return 0;
Shape2DSW *shape = static_cast<Physics2DServerSW*>(Physics2DServer::get_singleton())->shape_owner.get(p_shape);
ERR_FAIL_COND_V(!shape,0);
Rect2 aabb = p_xform.xform(shape->get_aabb());
int amount = space->broadphase->cull_aabb(aabb,space->intersection_query_results,Space2DSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results);
bool collided=false;
int cc=0;
for(int i=0;i<amount;i++) {
if (cc>=p_result_max)
break;
if (space->intersection_query_results[i]->get_type()==CollisionObject2DSW::TYPE_AREA)
continue; //ignore area
if (p_exclude.has( space->intersection_query_results[i]->get_self()))
continue;
const CollisionObject2DSW *col_obj=space->intersection_query_results[i];
int shape_idx=space->intersection_query_subindex_results[i];
if (!CollisionSolver2DSW::solve(shape,p_xform,p_motion,col_obj->get_shape(shape_idx),col_obj->get_transform() * col_obj->get_shape_transform(shape_idx),Vector2(),NULL,NULL,NULL))
continue;
r_results[cc].collider_id=col_obj->get_instance_id();
if (r_results[cc].collider_id!=0)
r_results[cc].collider=ObjectDB::get_instance(r_results[cc].collider_id);
r_results[cc].rid=col_obj->get_self();
r_results[cc].shape=shape_idx;
cc++;
}
return cc;
}
struct MotionCallbackRayCastData {
Vector2 best_contact;
Vector2 best_normal;
float best_len;
Matrix32 b_xform_inv;
Matrix32 b_xform;
Vector2 motion;
Shape2DSW * shape_B;
};
static void _motion_cbk_result(const Vector2& p_point_A,const Vector2& p_point_B,void *p_userdata) {
MotionCallbackRayCastData *rd=(MotionCallbackRayCastData*)p_userdata;
Vector2 contact_normal = (p_point_B-p_point_A).normalized();
Vector2 from=p_point_A-(rd->motion*1.01);
Vector2 p,n;
if (contact_normal.dot(rd->motion.normalized())<CMP_EPSILON) {
//safe to assume it was a perpendicular collision
n=contact_normal;
p=p_point_B;
} else {
//entered in a different angle
Vector2 to = p_point_A+rd->motion; //avoid precission issues
bool res = rd->shape_B->intersect_segment(rd->b_xform_inv.xform(from),rd->b_xform_inv.xform(to),p,n);
if (!res) {
print_line("lolwut failed");
return;
}
p = rd->b_xform.xform(p);
n = rd->b_xform_inv.basis_xform_inv(n).normalized();
}
float len = p.distance_to(from);
if (len<rd->best_len) {
rd->best_contact=p;
rd->best_normal=n;
rd->best_len=len;
}
}
bool Physics2DDirectSpaceStateSW::cast_motion(const RID& p_shape, const Matrix32& p_xform,const Vector2& p_motion, MotionCastCollision &r_result, const Set<RID>& p_exclude,uint32_t p_user_mask) {
Shape2DSW *shape = static_cast<Physics2DServerSW*>(Physics2DServer::get_singleton())->shape_owner.get(p_shape);
ERR_FAIL_COND_V(!shape,0);
Rect2 aabb = p_xform.xform(shape->get_aabb());
aabb=aabb.merge(Rect2(aabb.pos+p_motion,aabb.size)); //motion
int amount = space->broadphase->cull_aabb(aabb,space->intersection_query_results,Space2DSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results);
bool collided=false;
r_result.travel=1;
MotionCallbackRayCastData best_normal;
best_normal.best_len=1e20;
for(int i=0;i<amount;i++) {
if (space->intersection_query_results[i]->get_type()==CollisionObject2DSW::TYPE_AREA)
continue; //ignore area
if (p_exclude.has( space->intersection_query_results[i]->get_self()))
continue; //ignore excluded
const CollisionObject2DSW *col_obj=space->intersection_query_results[i];
int shape_idx=space->intersection_query_subindex_results[i];
Matrix32 col_obj_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
//test initial overlap, does it collide if going all the way?
if (!CollisionSolver2DSW::solve(shape,p_xform,p_motion,col_obj->get_shape(shape_idx),col_obj_xform,Vector2() ,NULL,NULL,NULL)) {
continue;
}
//test initial overlap
if (CollisionSolver2DSW::solve(shape,p_xform,Vector2(),col_obj->get_shape(shape_idx),col_obj_xform,Vector2() ,NULL,NULL,NULL)) {
r_result.collider_id=col_obj->get_instance_id();
r_result.collider=r_result.collider_id!=0 ? ObjectDB::get_instance(col_obj->get_instance_id()) : NULL;
r_result.shape=shape_idx;
r_result.rid=col_obj->get_self();
r_result.travel=0;
r_result.point=Vector2();
r_result.normal=Vector2();
return true;
}
#if 0
Vector2 mnormal=p_motion.normalized();
Matrix32 col_shape_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
ShapeSW *col_shape = col_obj->get_shape(shape_idx);
real_t min,max;
col_shape->project_rangev(mnormal,col_shape_xform,min,max);
real_t width = max-min;
int a;
Vector2 s[2];
col_shape->get_supports(col_shape_xform.basis_xform(mnormal).normalized(),s,a);
Vector2 from = col_shape_xform.xform(s[0]);
Vector2 to = from + p_motion;
Matrix32 from_inv = col_shape_xform.affine_inverse();
Vector2 local_from = from_inv.xform(from-mnormal*width*0.1); //start from a little inside the bounding box
Vector2 local_to = from_inv.xform(to);
Vector2 rpos,rnorm;
if (!col_shape->intersect_segment(local_from,local_to,rpos,rnorm))
return false;
//ray hit something
Vector2 hitpos = p_xform_B.xform(rpos);
#endif
//just do kinematic solving
float low=0;
float hi=1;
Vector2 mnormal=p_motion.normalized();
for(int i=0;i<8;i++) { //steps should be customizable..
Matrix32 xfa = p_xform;
float ofs = (low+hi)*0.5;
Vector2 sep=mnormal; //important optimization for this to work fast enough
bool collided = CollisionSolver2DSW::solve(shape,p_xform,p_motion*ofs,col_obj->get_shape(shape_idx),col_obj_xform,Vector2(),NULL,NULL,&sep);
if (collided) {
hi=ofs;
} else {
low=ofs;
}
}
best_normal.shape_B=col_obj->get_shape(shape_idx);
best_normal.motion=p_motion*hi;
best_normal.b_xform=col_obj_xform;
best_normal.b_xform_inv=col_obj_xform.affine_inverse();
bool sc = CollisionSolver2DSW::solve(shape,p_xform,p_motion*hi,col_obj->get_shape(shape_idx),col_obj->get_transform() * col_obj->get_shape_transform(shape_idx),Vector2() ,_motion_cbk_result,&best_normal);
print_line("CLD: "+itos(sc));
if (collided && low>=r_result.travel)
continue;
collided=true;
r_result.travel=low;
r_result.collider_id=col_obj->get_instance_id();
r_result.collider=r_result.collider_id!=0 ? ObjectDB::get_instance(col_obj->get_instance_id()) : NULL;
r_result.shape=shape_idx;
r_result.rid=col_obj->get_self();
}
if (collided) {
ERR_FAIL_COND_V(best_normal.best_normal==Vector2(),false);
r_result.normal=best_normal.best_normal;
r_result.point=best_normal.best_contact;
}
return collided;
}
Physics2DDirectSpaceStateSW::Physics2DDirectSpaceStateSW() {
space=NULL;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////
void* Space2DSW::_broadphase_pair(CollisionObject2DSW *A,int p_subindex_A,CollisionObject2DSW *B,int p_subindex_B,void *p_self) {
CollisionObject2DSW::Type type_A=A->get_type();
CollisionObject2DSW::Type type_B=B->get_type();
if (type_A>type_B) {
SWAP(A,B);
SWAP(p_subindex_A,p_subindex_B);
SWAP(type_A,type_B);
}
Space2DSW *self = (Space2DSW*)p_self;
if (type_A==CollisionObject2DSW::TYPE_AREA) {
ERR_FAIL_COND_V(type_B!=CollisionObject2DSW::TYPE_BODY,NULL);
Area2DSW *area=static_cast<Area2DSW*>(A);
Body2DSW *body=static_cast<Body2DSW*>(B);
AreaPair2DSW *area_pair = memnew(AreaPair2DSW(body,p_subindex_B,area,p_subindex_A) );
return area_pair;
} else {
BodyPair2DSW *b = memnew( BodyPair2DSW((Body2DSW*)A,p_subindex_A,(Body2DSW*)B,p_subindex_B) );
return b;
}
return NULL;
}
void Space2DSW::_broadphase_unpair(CollisionObject2DSW *A,int p_subindex_A,CollisionObject2DSW *B,int p_subindex_B,void *p_data,void *p_self) {
Space2DSW *self = (Space2DSW*)p_self;
Constraint2DSW *c = (Constraint2DSW*)p_data;
memdelete(c);
}
const SelfList<Body2DSW>::List& Space2DSW::get_active_body_list() const {
return active_list;
}
void Space2DSW::body_add_to_active_list(SelfList<Body2DSW>* p_body) {
active_list.add(p_body);
}
void Space2DSW::body_remove_from_active_list(SelfList<Body2DSW>* p_body) {
active_list.remove(p_body);
}
void Space2DSW::body_add_to_inertia_update_list(SelfList<Body2DSW>* p_body) {
inertia_update_list.add(p_body);
}
void Space2DSW::body_remove_from_inertia_update_list(SelfList<Body2DSW>* p_body) {
inertia_update_list.remove(p_body);
}
BroadPhase2DSW *Space2DSW::get_broadphase() {
return broadphase;
}
void Space2DSW::add_object(CollisionObject2DSW *p_object) {
ERR_FAIL_COND( objects.has(p_object) );
objects.insert(p_object);
}
void Space2DSW::remove_object(CollisionObject2DSW *p_object) {
ERR_FAIL_COND( !objects.has(p_object) );
objects.erase(p_object);
}
const Set<CollisionObject2DSW*> &Space2DSW::get_objects() const {
return objects;
}
void Space2DSW::body_add_to_state_query_list(SelfList<Body2DSW>* p_body) {
state_query_list.add(p_body);
}
void Space2DSW::body_remove_from_state_query_list(SelfList<Body2DSW>* p_body) {
state_query_list.remove(p_body);
}
void Space2DSW::area_add_to_monitor_query_list(SelfList<Area2DSW>* p_area) {
monitor_query_list.add(p_area);
}
void Space2DSW::area_remove_from_monitor_query_list(SelfList<Area2DSW>* p_area) {
monitor_query_list.remove(p_area);
}
void Space2DSW::area_add_to_moved_list(SelfList<Area2DSW>* p_area) {
area_moved_list.add(p_area);
}
void Space2DSW::area_remove_from_moved_list(SelfList<Area2DSW>* p_area) {
area_moved_list.remove(p_area);
}
const SelfList<Area2DSW>::List& Space2DSW::get_moved_area_list() const {
return area_moved_list;
}
void Space2DSW::call_queries() {
while(state_query_list.first()) {
Body2DSW * b = state_query_list.first()->self();
b->call_queries();
state_query_list.remove(state_query_list.first());
}
while(monitor_query_list.first()) {
Area2DSW * a = monitor_query_list.first()->self();
a->call_queries();
monitor_query_list.remove(monitor_query_list.first());
}
}
void Space2DSW::setup() {
while(inertia_update_list.first()) {
inertia_update_list.first()->self()->update_inertias();
inertia_update_list.remove(inertia_update_list.first());
}
}
void Space2DSW::update() {
broadphase->update();
}
void Space2DSW::set_param(Physics2DServer::SpaceParameter p_param, real_t p_value) {
switch(p_param) {
case Physics2DServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS: contact_recycle_radius=p_value; break;
case Physics2DServer::SPACE_PARAM_CONTACT_MAX_SEPARATION: contact_max_separation=p_value; break;
case Physics2DServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION: contact_max_allowed_penetration=p_value; break;
case Physics2DServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_TRESHOLD: body_linear_velocity_sleep_treshold=p_value; break;
case Physics2DServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_TRESHOLD: body_angular_velocity_sleep_treshold=p_value; break;
case Physics2DServer::SPACE_PARAM_BODY_TIME_TO_SLEEP: body_time_to_sleep=p_value; break;
case Physics2DServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO: body_angular_velocity_damp_ratio=p_value; break;
case Physics2DServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS: constraint_bias=p_value; break;
}
}
real_t Space2DSW::get_param(Physics2DServer::SpaceParameter p_param) const {
switch(p_param) {
case Physics2DServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS: return contact_recycle_radius;
case Physics2DServer::SPACE_PARAM_CONTACT_MAX_SEPARATION: return contact_max_separation;
case Physics2DServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION: return contact_max_allowed_penetration;
case Physics2DServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_TRESHOLD: return body_linear_velocity_sleep_treshold;
case Physics2DServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_TRESHOLD: return body_angular_velocity_sleep_treshold;
case Physics2DServer::SPACE_PARAM_BODY_TIME_TO_SLEEP: return body_time_to_sleep;
case Physics2DServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO: return body_angular_velocity_damp_ratio;
case Physics2DServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS: return constraint_bias;
}
return 0;
}
void Space2DSW::lock() {
locked=true;
}
void Space2DSW::unlock() {
locked=false;
}
bool Space2DSW::is_locked() const {
return locked;
}
Physics2DDirectSpaceStateSW *Space2DSW::get_direct_state() {
return direct_access;
}
Space2DSW::Space2DSW() {
locked=false;
contact_recycle_radius=0.01;
contact_max_separation=0.05;
contact_max_allowed_penetration= 0.01;
constraint_bias = 0.01;
body_linear_velocity_sleep_treshold=0.01;
body_angular_velocity_sleep_treshold=(8.0 / 180.0 * Math_PI);
body_time_to_sleep=0.5;
body_angular_velocity_damp_ratio=15;
broadphase = BroadPhase2DSW::create_func();
broadphase->set_pair_callback(_broadphase_pair,this);
broadphase->set_unpair_callback(_broadphase_unpair,this);
area=NULL;
direct_access = memnew( Physics2DDirectSpaceStateSW );
direct_access->space=this;
}
Space2DSW::~Space2DSW() {
memdelete(broadphase);
memdelete( direct_access );
}