virtualx-engine/servers/physics_3d/godot_body_3d.h

397 lines
14 KiB
C++
Raw Normal View History

/**************************************************************************/
/* godot_body_3d.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef GODOT_BODY_3D_H
#define GODOT_BODY_3D_H
#include "godot_area_3d.h"
#include "godot_collision_object_3d.h"
#include "core/templates/vset.h"
class GodotConstraint3D;
class GodotPhysicsDirectBodyState3D;
class GodotBody3D : public GodotCollisionObject3D {
PhysicsServer3D::BodyMode mode = PhysicsServer3D::BODY_MODE_RIGID;
Vector3 linear_velocity;
Vector3 angular_velocity;
Vector3 prev_linear_velocity;
Vector3 prev_angular_velocity;
Vector3 constant_linear_velocity;
Vector3 constant_angular_velocity;
Vector3 biased_linear_velocity;
Vector3 biased_angular_velocity;
real_t mass = 1.0;
real_t bounce = 0.0;
real_t friction = 1.0;
Vector3 inertia;
PhysicsServer3D::BodyDampMode linear_damp_mode = PhysicsServer3D::BODY_DAMP_MODE_COMBINE;
PhysicsServer3D::BodyDampMode angular_damp_mode = PhysicsServer3D::BODY_DAMP_MODE_COMBINE;
real_t linear_damp = 0.0;
real_t angular_damp = 0.0;
real_t total_linear_damp = 0.0;
real_t total_angular_damp = 0.0;
real_t gravity_scale = 1.0;
uint16_t locked_axis = 0;
real_t _inv_mass = 1.0;
Vector3 _inv_inertia; // Relative to the principal axes of inertia
// Relative to the local frame of reference
Basis principal_inertia_axes_local;
Vector3 center_of_mass_local;
// In world orientation with local origin
Basis _inv_inertia_tensor;
Basis principal_inertia_axes;
Vector3 center_of_mass;
bool calculate_inertia = true;
bool calculate_center_of_mass = true;
Vector3 gravity;
real_t still_time = 0.0;
Vector3 applied_force;
Vector3 applied_torque;
Vector3 constant_force;
Vector3 constant_torque;
SelfList<GodotBody3D> active_list;
SelfList<GodotBody3D> mass_properties_update_list;
SelfList<GodotBody3D> direct_state_query_list;
VSet<RID> exceptions;
bool omit_force_integration = false;
bool active = true;
bool continuous_cd = false;
bool can_sleep = true;
bool first_time_kinematic = false;
void _mass_properties_changed();
2022-04-05 12:40:26 +02:00
virtual void _shapes_changed() override;
Transform3D new_transform;
HashMap<GodotConstraint3D *, int> constraint_map;
2015-03-20 00:53:54 +01:00
Vector<AreaCMP> areas;
struct Contact {
Vector3 local_pos;
Vector3 local_normal;
Vector3 local_velocity_at_pos;
real_t depth = 0.0;
int local_shape = 0;
Vector3 collider_pos;
int collider_shape = 0;
ObjectID collider_instance_id;
RID collider;
Vector3 collider_velocity_at_pos;
Vector3 impulse;
};
Vector<Contact> contacts; //no contacts by default
int contact_count = 0;
Callable body_state_callback;
struct ForceIntegrationCallbackData {
Callable callable;
Variant udata;
};
ForceIntegrationCallbackData *fi_callback_data = nullptr;
GodotPhysicsDirectBodyState3D *direct_state = nullptr;
uint64_t island_step = 0;
void _update_transform_dependent();
friend class GodotPhysicsDirectBodyState3D; // i give up, too many functions to expose
public:
void set_state_sync_callback(const Callable &p_callable);
void set_force_integration_callback(const Callable &p_callable, const Variant &p_udata = Variant());
GodotPhysicsDirectBodyState3D *get_direct_state();
_FORCE_INLINE_ void add_area(GodotArea3D *p_area) {
int index = areas.find(AreaCMP(p_area));
if (index > -1) {
areas.write[index].refCount += 1;
} else {
areas.ordered_insert(AreaCMP(p_area));
}
}
_FORCE_INLINE_ void remove_area(GodotArea3D *p_area) {
int index = areas.find(AreaCMP(p_area));
if (index > -1) {
areas.write[index].refCount -= 1;
if (areas[index].refCount < 1) {
areas.remove_at(index);
}
}
}
_FORCE_INLINE_ void set_max_contacts_reported(int p_size) {
contacts.resize(p_size);
contact_count = 0;
if (mode == PhysicsServer3D::BODY_MODE_KINEMATIC && p_size) {
set_active(true);
}
}
_FORCE_INLINE_ int get_max_contacts_reported() const { return contacts.size(); }
2020-12-15 13:04:21 +01:00
_FORCE_INLINE_ bool can_report_contacts() const { return !contacts.is_empty(); }
_FORCE_INLINE_ void add_contact(const Vector3 &p_local_pos, const Vector3 &p_local_normal, real_t p_depth, int p_local_shape, const Vector3 &p_local_velocity_at_pos, const Vector3 &p_collider_pos, int p_collider_shape, ObjectID p_collider_instance_id, const RID &p_collider, const Vector3 &p_collider_velocity_at_pos, const Vector3 &p_impulse);
_FORCE_INLINE_ void add_exception(const RID &p_exception) { exceptions.insert(p_exception); }
_FORCE_INLINE_ void remove_exception(const RID &p_exception) { exceptions.erase(p_exception); }
_FORCE_INLINE_ bool has_exception(const RID &p_exception) const { return exceptions.has(p_exception); }
_FORCE_INLINE_ const VSet<RID> &get_exceptions() const { return exceptions; }
_FORCE_INLINE_ uint64_t get_island_step() const { return island_step; }
_FORCE_INLINE_ void set_island_step(uint64_t p_step) { island_step = p_step; }
_FORCE_INLINE_ void add_constraint(GodotConstraint3D *p_constraint, int p_pos) { constraint_map[p_constraint] = p_pos; }
_FORCE_INLINE_ void remove_constraint(GodotConstraint3D *p_constraint) { constraint_map.erase(p_constraint); }
const HashMap<GodotConstraint3D *, int> &get_constraint_map() const { return constraint_map; }
_FORCE_INLINE_ void clear_constraint_map() { constraint_map.clear(); }
_FORCE_INLINE_ void set_omit_force_integration(bool p_omit_force_integration) { omit_force_integration = p_omit_force_integration; }
_FORCE_INLINE_ bool get_omit_force_integration() const { return omit_force_integration; }
_FORCE_INLINE_ Basis get_principal_inertia_axes() const { return principal_inertia_axes; }
_FORCE_INLINE_ Vector3 get_center_of_mass() const { return center_of_mass; }
_FORCE_INLINE_ Vector3 get_center_of_mass_local() const { return center_of_mass_local; }
_FORCE_INLINE_ Vector3 xform_local_to_principal(const Vector3 &p_pos) const { return principal_inertia_axes_local.xform(p_pos - center_of_mass_local); }
_FORCE_INLINE_ void set_linear_velocity(const Vector3 &p_velocity) { linear_velocity = p_velocity; }
_FORCE_INLINE_ Vector3 get_linear_velocity() const { return linear_velocity; }
_FORCE_INLINE_ void set_angular_velocity(const Vector3 &p_velocity) { angular_velocity = p_velocity; }
_FORCE_INLINE_ Vector3 get_angular_velocity() const { return angular_velocity; }
_FORCE_INLINE_ Vector3 get_prev_linear_velocity() const { return prev_linear_velocity; }
_FORCE_INLINE_ Vector3 get_prev_angular_velocity() const { return prev_angular_velocity; }
_FORCE_INLINE_ const Vector3 &get_biased_linear_velocity() const { return biased_linear_velocity; }
_FORCE_INLINE_ const Vector3 &get_biased_angular_velocity() const { return biased_angular_velocity; }
_FORCE_INLINE_ void apply_central_impulse(const Vector3 &p_impulse) {
linear_velocity += p_impulse * _inv_mass;
}
_FORCE_INLINE_ void apply_impulse(const Vector3 &p_impulse, const Vector3 &p_position = Vector3()) {
linear_velocity += p_impulse * _inv_mass;
angular_velocity += _inv_inertia_tensor.xform((p_position - center_of_mass).cross(p_impulse));
}
_FORCE_INLINE_ void apply_torque_impulse(const Vector3 &p_impulse) {
angular_velocity += _inv_inertia_tensor.xform(p_impulse);
}
_FORCE_INLINE_ void apply_bias_impulse(const Vector3 &p_impulse, const Vector3 &p_position = Vector3(), real_t p_max_delta_av = -1.0) {
biased_linear_velocity += p_impulse * _inv_mass;
if (p_max_delta_av != 0.0) {
Vector3 delta_av = _inv_inertia_tensor.xform((p_position - center_of_mass).cross(p_impulse));
if (p_max_delta_av > 0 && delta_av.length() > p_max_delta_av) {
delta_av = delta_av.normalized() * p_max_delta_av;
}
biased_angular_velocity += delta_av;
}
}
_FORCE_INLINE_ void apply_bias_torque_impulse(const Vector3 &p_impulse) {
biased_angular_velocity += _inv_inertia_tensor.xform(p_impulse);
}
_FORCE_INLINE_ void apply_central_force(const Vector3 &p_force) {
2018-02-16 17:48:07 +01:00
applied_force += p_force;
}
_FORCE_INLINE_ void apply_force(const Vector3 &p_force, const Vector3 &p_position = Vector3()) {
applied_force += p_force;
applied_torque += (p_position - center_of_mass).cross(p_force);
}
_FORCE_INLINE_ void apply_torque(const Vector3 &p_torque) {
2018-02-16 17:48:07 +01:00
applied_torque += p_torque;
}
_FORCE_INLINE_ void add_constant_central_force(const Vector3 &p_force) {
constant_force += p_force;
}
_FORCE_INLINE_ void add_constant_force(const Vector3 &p_force, const Vector3 &p_position = Vector3()) {
constant_force += p_force;
constant_torque += (p_position - center_of_mass).cross(p_force);
}
_FORCE_INLINE_ void add_constant_torque(const Vector3 &p_torque) {
constant_torque += p_torque;
}
void set_constant_force(const Vector3 &p_force) { constant_force = p_force; }
Vector3 get_constant_force() const { return constant_force; }
void set_constant_torque(const Vector3 &p_torque) { constant_torque = p_torque; }
Vector3 get_constant_torque() const { return constant_torque; }
void set_active(bool p_active);
_FORCE_INLINE_ bool is_active() const { return active; }
_FORCE_INLINE_ void wakeup() {
if ((!get_space()) || mode == PhysicsServer3D::BODY_MODE_STATIC || mode == PhysicsServer3D::BODY_MODE_KINEMATIC) {
return;
}
set_active(true);
}
void set_param(PhysicsServer3D::BodyParameter p_param, const Variant &p_value);
Variant get_param(PhysicsServer3D::BodyParameter p_param) const;
void set_mode(PhysicsServer3D::BodyMode p_mode);
PhysicsServer3D::BodyMode get_mode() const;
void set_state(PhysicsServer3D::BodyState p_state, const Variant &p_variant);
Variant get_state(PhysicsServer3D::BodyState p_state) const;
_FORCE_INLINE_ void set_continuous_collision_detection(bool p_enable) { continuous_cd = p_enable; }
_FORCE_INLINE_ bool is_continuous_collision_detection_enabled() const { return continuous_cd; }
2022-04-05 12:40:26 +02:00
void set_space(GodotSpace3D *p_space) override;
void update_mass_properties();
void reset_mass_properties();
_FORCE_INLINE_ real_t get_inv_mass() const { return _inv_mass; }
_FORCE_INLINE_ const Vector3 &get_inv_inertia() const { return _inv_inertia; }
_FORCE_INLINE_ const Basis &get_inv_inertia_tensor() const { return _inv_inertia_tensor; }
_FORCE_INLINE_ real_t get_friction() const { return friction; }
_FORCE_INLINE_ real_t get_bounce() const { return bounce; }
void set_axis_lock(PhysicsServer3D::BodyAxis p_axis, bool lock);
bool is_axis_locked(PhysicsServer3D::BodyAxis p_axis) const;
void integrate_forces(real_t p_step);
void integrate_velocities(real_t p_step);
_FORCE_INLINE_ Vector3 get_velocity_in_local_point(const Vector3 &rel_pos) const {
return linear_velocity + angular_velocity.cross(rel_pos - center_of_mass);
}
_FORCE_INLINE_ real_t compute_impulse_denominator(const Vector3 &p_pos, const Vector3 &p_normal) const {
Vector3 r0 = p_pos - get_transform().origin - center_of_mass;
Vector3 c0 = (r0).cross(p_normal);
Vector3 vec = (_inv_inertia_tensor.xform_inv(c0)).cross(r0);
return _inv_mass + p_normal.dot(vec);
}
_FORCE_INLINE_ real_t compute_angular_impulse_denominator(const Vector3 &p_axis) const {
return p_axis.dot(_inv_inertia_tensor.xform_inv(p_axis));
}
//void simulate_motion(const Transform3D& p_xform,real_t p_step);
void call_queries();
void wakeup_neighbours();
bool sleep_test(real_t p_step);
GodotBody3D();
~GodotBody3D();
};
//add contact inline
void GodotBody3D::add_contact(const Vector3 &p_local_pos, const Vector3 &p_local_normal, real_t p_depth, int p_local_shape, const Vector3 &p_local_velocity_at_pos, const Vector3 &p_collider_pos, int p_collider_shape, ObjectID p_collider_instance_id, const RID &p_collider, const Vector3 &p_collider_velocity_at_pos, const Vector3 &p_impulse) {
int c_max = contacts.size();
if (c_max == 0) {
return;
}
Contact *c = contacts.ptrw();
int idx = -1;
if (contact_count < c_max) {
idx = contact_count++;
} else {
real_t least_depth = 1e20;
int least_deep = -1;
for (int i = 0; i < c_max; i++) {
if (i == 0 || c[i].depth < least_depth) {
least_deep = i;
least_depth = c[i].depth;
}
}
if (least_deep >= 0 && least_depth < p_depth) {
idx = least_deep;
}
if (idx == -1) {
return; //none least deepe than this
}
}
c[idx].local_pos = p_local_pos;
c[idx].local_normal = p_local_normal;
c[idx].local_velocity_at_pos = p_local_velocity_at_pos;
c[idx].depth = p_depth;
c[idx].local_shape = p_local_shape;
c[idx].collider_pos = p_collider_pos;
c[idx].collider_shape = p_collider_shape;
c[idx].collider_instance_id = p_collider_instance_id;
c[idx].collider = p_collider;
c[idx].collider_velocity_at_pos = p_collider_velocity_at_pos;
c[idx].impulse = p_impulse;
}
#endif // GODOT_BODY_3D_H