Improve the Basis class documentation

This commit is contained in:
Hugo Locurcio 2019-12-03 17:09:26 +01:00
parent 7255d6c123
commit bb62c07fce
No known key found for this signature in database
GPG key ID: 39E8F8BE30B0A49C

View file

@ -64,20 +64,21 @@
<return type="Vector3"> <return type="Vector3">
</return> </return>
<description> <description>
Assuming that the matrix is a proper rotation matrix (orthonormal matrix with determinant +1), return Euler angles (in the YXZ convention: first Z, then X, and Y last). Returned vector contains the rotation angles in the format (X angle, Y angle, Z angle). Returns the basis's rotation in the form of Euler angles (in the YXZ convention: first Z, then X, and Y last). The returned vector contains the rotation angles in the format (X angle, Y angle, Z angle). See [method get_rotation_quat] if you need a quaternion instead.
</description> </description>
</method> </method>
<method name="get_orthogonal_index"> <method name="get_orthogonal_index">
<return type="int"> <return type="int">
</return> </return>
<description> <description>
This function considers a discretization of rotations into 24 points on unit sphere, lying along the vectors (x,y,z) with each component being either -1,0 or 1, and returns the index of the point best representing the orientation of the object. It is mainly used by the grid map editor. For further details, refer to Godot source code. This function considers a discretization of rotations into 24 points on unit sphere, lying along the vectors (x,y,z) with each component being either -1, 0, or 1, and returns the index of the point best representing the orientation of the object. It is mainly used by the grid map editor. For further details, refer to the Godot source code.
</description> </description>
</method> </method>
<method name="get_rotation_quat"> <method name="get_rotation_quat">
<return type="Quat"> <return type="Quat">
</return> </return>
<description> <description>
Returns the basis's rotation in the form of a quaternion. See [method get_euler] if you need Euler angles, but keep in mind quaternions should generally be preferred to Euler angles.
</description> </description>
</method> </method>
<method name="get_scale"> <method name="get_scale">
@ -210,12 +211,16 @@
</members> </members>
<constants> <constants>
<constant name="IDENTITY" value="Basis( 1, 0, 0, 0, 1, 0, 0, 0, 1 )"> <constant name="IDENTITY" value="Basis( 1, 0, 0, 0, 1, 0, 0, 0, 1 )">
The identity basis. This is identical to calling [code]Basis()[/code] without any parameters. This constant can be used to make your code clearer.
</constant> </constant>
<constant name="FLIP_X" value="Basis( -1, 0, 0, 0, 1, 0, 0, 0, 1 )"> <constant name="FLIP_X" value="Basis( -1, 0, 0, 0, 1, 0, 0, 0, 1 )">
The basis that will flip something along the X axis when used in a transformation.
</constant> </constant>
<constant name="FLIP_Y" value="Basis( 1, 0, 0, 0, -1, 0, 0, 0, 1 )"> <constant name="FLIP_Y" value="Basis( 1, 0, 0, 0, -1, 0, 0, 0, 1 )">
The basis that will flip something along the Y axis when used in a transformation.
</constant> </constant>
<constant name="FLIP_Z" value="Basis( 1, 0, 0, 0, 1, 0, 0, 0, -1 )"> <constant name="FLIP_Z" value="Basis( 1, 0, 0, 0, 1, 0, 0, 0, -1 )">
The basis that will flip something along the Z axis when used in a transformation.
</constant> </constant>
</constants> </constants>
</class> </class>