Which means that reduz' beloved style which we all became used to
will now be changed automatically to remove the first empty line.
This makes us lean closer to 1TBS (the one true brace style) instead
of hybridating it with some Allman-inspired spacing.
There's still the case of braces around single-statement blocks that
needs to be addressed (but clang-format can't help with that, but
clang-tidy may if we agree about it).
Part of #33027.
Using `clang-tidy`'s `modernize-use-default-member-init` check and
manual review of the changes, and some extra manual changes that
`clang-tidy` failed to do.
Also went manually through all of `core` to find occurrences that
`clang-tidy` couldn't handle, especially all initializations done
in a constructor without using initializer lists.
Configured for a max line length of 120 characters.
psf/black is very opinionated and purposely doesn't leave much room for
configuration. The output is mostly OK so that should be fine for us,
but some things worth noting:
- Manually wrapped strings will be reflowed, so by using a line length
of 120 for the sake of preserving readability for our long command
calls, it also means that some manually wrapped strings are back on
the same line and should be manually merged again.
- Code generators using string concatenation extensively look awful,
since black puts each operand on a single line. We need to refactor
these generators to use more pythonic string formatting, for which
many options are available (`%`, `format` or f-strings).
- CI checks and a pre-commit hook will be added to ensure that future
buildsystem changes are well-formatted.
Main:
- It's now implemented thanks to `<mutex>`. No more platform-specific implementations.
- `BinaryMutex` (non-recursive) is added, as an alternative for special cases.
- Doesn't need allocation/deallocation anymore. It can live in the stack and be part of other classes.
- Because of that, it's methods are now `const` and the inner mutex is `mutable` so it can be easily used in `const` contexts.
- A no-op implementation is provided if `NO_THREADS` is defined. No more need to add `#ifdef NO_THREADS` just for this.
- `MutexLock` now takes a reference. At this point the cases of null `Mutex`es are rare. If you ever need that, just don't use `MutexLock`.
- Thread-safe utilities are therefore simpler now.
Misc.:
- `ScopedMutexLock` is dropped and replaced by `MutexLock`, because they were pretty much the same.
- Every case of lock, do-something, unlock is replaced by `MutexLock` (complex cases where it's not straightfoward are kept as as explicit lock and unlock).
- `ShaderRD` contained an `std::mutex`, which has been replaced by `Mutex`.
Happy new year to the wonderful Godot community!
We're starting a new decade with a well-established, non-profit, free
and open source game engine, and tons of further improvements in the
pipeline from hundreds of contributors.
Godot will keep getting better, and we're looking forward to all the
games that the community will keep developing and releasing with it.
The last remaining ERR_EXPLAIN call is in FreeType code and makes sense as is
(conditionally defines the error message).
There are a few ERR_EXPLAINC calls for C-strings where String is not included
which can stay as is to avoid adding additional _MSGC macros just for that.
Part of #31244.
It's the recommended way to set those, and is more portable
(automatically prepends -D for GCC/Clang and /D for MSVC).
We still use CPPFLAGS for some pre-processor flags which are not
defines.
Many contributors (me included) did not fully understand what CCFLAGS,
CXXFLAGS and CPPFLAGS refer to exactly, and were thus not using them
in the way they are intended to be.
As per the SCons manual: https://www.scons.org/doc/HTML/scons-user/apa.html
- CCFLAGS: General options that are passed to the C and C++ compilers.
- CFLAGS: General options that are passed to the C compiler (C only;
not C++).
- CXXFLAGS: General options that are passed to the C++ compiler. By
default, this includes the value of $CCFLAGS, so that setting
$CCFLAGS affects both C and C++ compilation.
- CPPFLAGS: User-specified C preprocessor options. These will be
included in any command that uses the C preprocessor, including not
just compilation of C and C++ source files [...], but also [...]
Fortran [...] and [...] assembly language source file[s].
TL;DR: Compiler options go to CCFLAGS, unless they must be restricted
to either C (CFLAGS) or C++ (CXXFLAGS). Preprocessor defines go to
CPPFLAGS.
This allows more consistency in the manner we include core headers,
where previously there would be a mix of absolute, relative and
include path-dependent includes.
-Project/Editor settings now show tooltips properly
-Settings thar require restart now will show a restart warning
-Video driver is now visible all the time, can be changed easily
-Added function to request current video driver
Using `misc/scripts/fix_headers.py` on all Godot files.
Some missing header guards were added, and the header inclusion order
was fixed in the Bullet module.
I can show you the code
Pretty, with proper whitespace
Tell me, coder, now when did
You last write readable code?
I can open your eyes
Make you see your bad indent
Force you to respect the style
The core devs agreed upon
A whole new world
A new fantastic code format
A de facto standard
With some sugar
Enforced with clang-format
A whole new world
A dazzling style we all dreamed of
And when we read it through
It's crystal clear
That now we're in a whole new world of code
That year should bring the long-awaited OpenGL ES 3.0 compatible renderer
with state-of-the-art rendering techniques tuned to work as low as middle
end handheld devices - without compromising with the possibilities given
for higher end desktop games of course. Great times ahead for the Godot
community and the gamers that will play our games!