* Node processing works on the concept of process groups.
* A node group can be inherited, run on main thread, or a sub-thread.
* Groups can be ordered.
* Process priority is now present for physics.
This is the first steps towards implementing https://github.com/godotengine/godot-proposals/issues/6424.
No threading or thread guards exist yet in most of the scene code other than Node. That will have to be added later.
As many open source projects have started doing it, we're removing the
current year from the copyright notice, so that we don't need to bump
it every year.
It seems like only the first year of publication is technically
relevant for copyright notices, and even that seems to be something
that many companies stopped listing altogether (in a version controlled
codebase, the commits are a much better source of date of publication
than a hardcoded copyright statement).
We also now list Godot Engine contributors first as we're collectively
the current maintainers of the project, and we clarify that the
"exclusive" copyright of the co-founders covers the timespan before
opensourcing (their further contributions are included as part of Godot
Engine contributors).
Also fixed "cf." Frenchism - it's meant as "refer to / see".
Android was the last platform to still attempt to disable RTTI (for binary
size), but both the Android editor and now the ICU library used by templates
need RTTI.
There could still be the possibility to support this for non-ICU template
builds (i.e. without the TextServerAdvanced module), but since this isn't one
of the build configurations we test regularly it's pretty risky to keep this
option only for that specific use case. And our code is already littered with
`dynamic_cast`s which weren't guarded with `!defined(NO_SAFE_CAST)`.
Adds a FramebufferCache singletion that operates the same way as UniformSetCache.
Allows creating framebuffers on the fly (and keep them cached if re-requested) such as:
```C++
RID fb = FramebufferCache::get_singleton()->get_cache(texture1,texture2);
```
This is not enabled by default in the core version for performance reasons,
as Vector/CowData are used in critical code paths where not zero'ing memory
which is going to be set later on can be important.
But for bindings / the scripting API, we make zero the new items by default
(which already happened for built types like Vector3, etc., but not for
trivial types like int, float).
Fixes#43033.
Co-authored-by: David Hoppenbrouwers <david@salt-inc.org>
Implement built-in classes Vector4, Vector4i and Projection.
* Two versions of Vector4 (float and integer).
* A Projection class, which is a 4x4 matrix specialized in projection types.
These types have been requested for a long time, but given they were very corner case they were not added before.
Because in Godot 4, reimplementing parts of the rendering engine is now possible, access to these types (heavily used by the rendering code) becomes a necessity.
**Q**: Why Projection and not Matrix4?
**A**: Godot does not use Matrix2, Matrix3, Matrix4x3, etc. naming convention because, within the engine, these types always have a *purpose*. As such, Godot names them: Transform2D, Transform3D or Basis. In this case, this 4x4 matrix is _always_ used as a _Projection_, hence the naming.
This PR implements a worked thread pool. It uses a fixed amount of threads in a pool and allows scheduling tasks
that can be run on threads (and then waited for). It satisfies the following use cases:
* HTML5 thread count is fixed (and similar restrictions are known in consoles) so we need to reuse threads.
* Thread spawning is slow in general, so reusing threads is faster anyway.
* This implementation supports recursive waiting for tasks, making it less prone to deadlocks if threads from the pool also run tasks.
After this is approved and merged, subsequent PRs will be needed to replace the ThreadWorkPool usage by this class.
Clean up and do fixes to hash functions and newly introduced murmur3 hashes in #61934
* Clean up usage of murmur3
* Fixed usages of binary murmur3 on floats (this is invalid)
* Changed DJB2 to use xor (which seems to be better)
* Map is unnecessary and inefficient in almost every case.
* Replaced by the new HashMap.
* Renamed Map to RBMap and Set to RBSet for cases that still make sense
(order matters) but use is discouraged.
There were very few cases where replacing by HashMap was undesired because
keeping the key order was intended.
I tried to keep those (as RBMap) as much as possible, but might have missed
some. Review appreciated!
Adds a new, cleaned up, HashMap implementation.
* Uses Robin Hood Hashing (https://en.wikipedia.org/wiki/Hash_table#Robin_Hood_hashing).
* Keeps elements in a double linked list for simpler, ordered, iteration.
* Allows keeping iterators for later use in removal (Unlike Map<>, it does not do much
for performance vs keeping the key, but helps replace old code).
* Uses a more modern C++ iterator API, deprecates the old one.
* Supports custom allocator (in case there is a wish to use a paged one).
This class aims to unify all the associative template usage and replace it by this one:
* Map<> (whereas key order does not matter, which is 99% of cases)
* HashMap<>
* OrderedHashMap<>
* OAHashMap<>
* Changed syntax usage for RD::Uniform to create faster with a single RID
* Converted render pass setup to use this in clustered renderer to test.
This is the first step into creating a proper uniform set cache system to simplify large parts of the codebase.
The same is done for `Vector` (and thus `Packed*Array`).
`begin` and `end` can now take any value and will be clamped to
`[-size(), size()]`. Negative values are a shorthand for indexing the array
from the last element upward.
`end` is given a default `INT_MAX` value (which will be clamped to `size()`)
so that the `end` parameter can be omitted to go from `begin` to the max size
of the array.
This makes `slice` works similarly to numpy's and JavaScript's.
Each file in Godot has had multiple contributors who co-authored it over the
years, and the information of who was the original person to create that file
is not very relevant, especially when used so inconsistently.
`git blame` is a much better way to know who initially authored or later
modified a given chunk of code, and most IDEs now have good integration to
show this information.
We prefer to prevent using chained assignment (`T a = b = c = T();`) as this
can lead to confusing code and subtle bugs.
According to https://en.wikipedia.org/wiki/Assignment_operator_(C%2B%2B), C++
allows any arbitrary return type, so this is standard compliant.
This could be re-assessed if/when we have an actual need for a behavior more
akin to that of the C++ STL, for now this PR simply changes a handful of
cases which were inconsistent with the rest of the codebase (`void` return
type was already the most common case prior to this commit).
Some platforms (*cough* web *cough*) have hard limits on the number of
threads that can be spawned.
Currently, ThreadPoolWork (mostly used in rendering/physics servers)
will spawn as many threads as CPUs available causing exception on
machines with high CPU count.
This commit adds a new overridable method to OS that returns the default
thread pool size (still the CPU count by default), and overrides it for
the JavaScript platform so it always allocate only one thread.
We can likely improve the whole ThreadPoolWork in the future to always
allocate X amount of threads, and assign jobs to them on the fly, but
that will require some more architectural changes.
`#pragma once` was used in a few files, yet we settled on using
traditional include guards instead.
The PooledList template comment was also moved to allow editors
such as Visual Studio Code to display the comment when hovering
PooledList.
`app.h` was renamed to `app_uwp.h` to be less generic for the
include guard.
On latest (11.1 as of this commit) GCC, the following warning is
continuously issued during build:
warning: placement new constructing an object of type
'SafeNumeric<unsigned int>' and size '4' in a region of type
'uint32_t*' {aka 'unsigned int*'} and size '0' [-Wplacement-new=]
This happens because on 98ceb60eb4 the new operator override used
was dropped and replaced with standard placement new. GCC sees the
subtraction from the pointer and complains as it thinks that the
SafeNumeric is placed outside an allocation, not knowing that the
address requested is already inside one.
After suggestions, the false positive is silenced, with no other
changes.