For the time being we don't support writing a description for those, preferring
having all details in the method's description.
Using self-closing tags saves half the lines, and prevents contributors from
thinking that they should write the argument or return documentation there.
(cherry picked from commit 7adf4cc9b5)
The method is used to either inflate or deflate a polygon.
For translating/transforming a polygon, use `Transform2D.xform`.
(cherry picked from commit 19b72da35d)
We already removed it from the online docs with #35132.
Currently it can only be "Built-In Types" (Variant types) or "Core"
(everything else), which is of limited use.
We might also want to consider dropping it from `ClassDB` altogether
in Godot 4.0.
- Add some missing descriptions.
- Add links to tutorials for ARVR and AnimationTree.
- Style fixes.
- Engine changes:
* Make `AnimationNodeTransition.input_<number>` properties internal
so that they don't appear in the docs. They still appear in the
inspector based on the actual number of inputs requested.
* Drop unimplemented `CPUParticles.flatness`. It's only used for 3D
particles in `ParticlesMaterial`, and thus only relevant for
`CPUParticles3D`.
- Document a few more properties and methods
- Add more information to many classes
- Fix lots of typos and gramar mistakes
- Use [code] tags for parameters consistently
- Use [b] and [i] tags consistently
- Put "Warning:" and "Note:" on their own line to be more visible,
and make them always bold
- Tweak formatting in code examples to be more readable
- Use double quotes consistently
- Add more links to third-party technologies
Can be used via scripting as `Geometry.triangulate_delaunay_2d(points)`
The interface is the same as in `Triangulate` library, returning indices
into triangulated points.
Clipper 6.4.2 is used internally to perform polypaths clipping, as well
as inflating/deflating polypaths. The following methods were added:
```
Geometry.merge_polygons_2d(poly_a, poly_b) # union
Geometry.clip_polygons_2d(poly_a, poly_b) # difference
Geometry.intersect_polygons_2d(poly_a, poly_b) # intersection
Geometry.exclude_polygons_2d(poly_a, poly_b) # xor
Geometry.clip_polyline_with_polygon_2d(poly_a, poly_b)
Geometry.intersect_polyline_with_polygon_2d(poly_a, poly_b)
Geometry.offset_polygon_2d(polygon, delta) # inflate/deflate
Geometry.offset_polyline_2d(polyline, delta) # returns polygons
// This one helps to implement CSG-like behaviour:
Geometry.transform_points_2d(points, transform)
```
All the methods return an array of polygons/polylines. The resulting
polygons could possibly be holes which could be checked with
`Geometry.is_polygon_clockwise()` which was exposed to scripting as well.
Rename user facing methods and variables as well as the corresponding
C++ methods according to the folloming changes:
* pos -> position
* rot -> rotation
* loc -> location
C++ variables are left as is.