virtualx-engine/doc/classes/Vector4.xml

422 lines
20 KiB
XML

<?xml version="1.0" encoding="UTF-8" ?>
<class name="Vector4" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd">
<brief_description>
A 4D vector using floating point coordinates.
</brief_description>
<description>
A 4-element structure that can be used to represent 4D coordinates or any other quadruplet of numeric values.
It uses floating-point coordinates. By default, these floating-point values use 32-bit precision, unlike [float] which is always 64-bit. If double precision is needed, compile the engine with the option [code]precision=double[/code].
See [Vector4i] for its integer counterpart.
[b]Note:[/b] In a boolean context, a Vector4 will evaluate to [code]false[/code] if it's equal to [code]Vector4(0, 0, 0, 0)[/code]. Otherwise, a Vector4 will always evaluate to [code]true[/code].
</description>
<tutorials>
</tutorials>
<constructors>
<constructor name="Vector4">
<return type="Vector4" />
<description>
Constructs a default-initialized [Vector4] with all components set to [code]0[/code].
</description>
</constructor>
<constructor name="Vector4">
<return type="Vector4" />
<param index="0" name="from" type="Vector4" />
<description>
Constructs a [Vector4] as a copy of the given [Vector4].
</description>
</constructor>
<constructor name="Vector4">
<return type="Vector4" />
<param index="0" name="from" type="Vector4i" />
<description>
Constructs a new [Vector4] from the given [Vector4i].
</description>
</constructor>
<constructor name="Vector4">
<return type="Vector4" />
<param index="0" name="x" type="float" />
<param index="1" name="y" type="float" />
<param index="2" name="z" type="float" />
<param index="3" name="w" type="float" />
<description>
Returns a [Vector4] with the given components.
</description>
</constructor>
</constructors>
<methods>
<method name="abs" qualifiers="const">
<return type="Vector4" />
<description>
Returns a new vector with all components in absolute values (i.e. positive).
</description>
</method>
<method name="ceil" qualifiers="const">
<return type="Vector4" />
<description>
Returns a new vector with all components rounded up (towards positive infinity).
</description>
</method>
<method name="clamp" qualifiers="const">
<return type="Vector4" />
<param index="0" name="min" type="Vector4" />
<param index="1" name="max" type="Vector4" />
<description>
Returns a new vector with all components clamped between the components of [param min] and [param max], by running [method @GlobalScope.clamp] on each component.
</description>
</method>
<method name="cubic_interpolate" qualifiers="const">
<return type="Vector4" />
<param index="0" name="b" type="Vector4" />
<param index="1" name="pre_a" type="Vector4" />
<param index="2" name="post_b" type="Vector4" />
<param index="3" name="weight" type="float" />
<description>
Performs a cubic interpolation between this vector and [param b] using [param pre_a] and [param post_b] as handles, and returns the result at position [param weight]. [param weight] is on the range of 0.0 to 1.0, representing the amount of interpolation.
</description>
</method>
<method name="cubic_interpolate_in_time" qualifiers="const">
<return type="Vector4" />
<param index="0" name="b" type="Vector4" />
<param index="1" name="pre_a" type="Vector4" />
<param index="2" name="post_b" type="Vector4" />
<param index="3" name="weight" type="float" />
<param index="4" name="b_t" type="float" />
<param index="5" name="pre_a_t" type="float" />
<param index="6" name="post_b_t" type="float" />
<description>
Performs a cubic interpolation between this vector and [param b] using [param pre_a] and [param post_b] as handles, and returns the result at position [param weight]. [param weight] is on the range of 0.0 to 1.0, representing the amount of interpolation.
It can perform smoother interpolation than [method cubic_interpolate] by the time values.
</description>
</method>
<method name="direction_to" qualifiers="const">
<return type="Vector4" />
<param index="0" name="to" type="Vector4" />
<description>
Returns the normalized vector pointing from this vector to [param to]. This is equivalent to using [code](b - a).normalized()[/code].
</description>
</method>
<method name="distance_squared_to" qualifiers="const">
<return type="float" />
<param index="0" name="to" type="Vector4" />
<description>
Returns the squared distance between this vector and [param to].
This method runs faster than [method distance_to], so prefer it if you need to compare vectors or need the squared distance for some formula.
</description>
</method>
<method name="distance_to" qualifiers="const">
<return type="float" />
<param index="0" name="to" type="Vector4" />
<description>
Returns the distance between this vector and [param to].
</description>
</method>
<method name="dot" qualifiers="const">
<return type="float" />
<param index="0" name="with" type="Vector4" />
<description>
Returns the dot product of this vector and [param with].
</description>
</method>
<method name="floor" qualifiers="const">
<return type="Vector4" />
<description>
Returns a new vector with all components rounded down (towards negative infinity).
</description>
</method>
<method name="inverse" qualifiers="const">
<return type="Vector4" />
<description>
Returns the inverse of the vector. This is the same as [code]Vector4(1.0 / v.x, 1.0 / v.y, 1.0 / v.z, 1.0 / v.w)[/code].
</description>
</method>
<method name="is_equal_approx" qualifiers="const">
<return type="bool" />
<param index="0" name="to" type="Vector4" />
<description>
Returns [code]true[/code] if this vector and [param to] are approximately equal, by running [method @GlobalScope.is_equal_approx] on each component.
</description>
</method>
<method name="is_finite" qualifiers="const">
<return type="bool" />
<description>
Returns [code]true[/code] if this vector is finite, by calling [method @GlobalScope.is_finite] on each component.
</description>
</method>
<method name="is_normalized" qualifiers="const">
<return type="bool" />
<description>
Returns [code]true[/code] if the vector is normalized, i.e. its length is approximately equal to 1.
</description>
</method>
<method name="is_zero_approx" qualifiers="const">
<return type="bool" />
<description>
Returns [code]true[/code] if this vector's values are approximately zero, by running [method @GlobalScope.is_zero_approx] on each component.
This method is faster than using [method is_equal_approx] with one value as a zero vector.
</description>
</method>
<method name="length" qualifiers="const">
<return type="float" />
<description>
Returns the length (magnitude) of this vector.
</description>
</method>
<method name="length_squared" qualifiers="const">
<return type="float" />
<description>
Returns the squared length (squared magnitude) of this vector.
This method runs faster than [method length], so prefer it if you need to compare vectors or need the squared distance for some formula.
</description>
</method>
<method name="lerp" qualifiers="const">
<return type="Vector4" />
<param index="0" name="to" type="Vector4" />
<param index="1" name="weight" type="float" />
<description>
Returns the result of the linear interpolation between this vector and [param to] by amount [param weight]. [param weight] is on the range of [code]0.0[/code] to [code]1.0[/code], representing the amount of interpolation.
</description>
</method>
<method name="max_axis_index" qualifiers="const">
<return type="int" />
<description>
Returns the axis of the vector's highest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_X].
</description>
</method>
<method name="min_axis_index" qualifiers="const">
<return type="int" />
<description>
Returns the axis of the vector's lowest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_W].
</description>
</method>
<method name="normalized" qualifiers="const">
<return type="Vector4" />
<description>
Returns the result of scaling the vector to unit length. Equivalent to [code]v / v.length()[/code]. See also [method is_normalized].
[b]Note:[/b] This function may return incorrect values if the input vector length is near zero.
</description>
</method>
<method name="posmod" qualifiers="const">
<return type="Vector4" />
<param index="0" name="mod" type="float" />
<description>
Returns a vector composed of the [method @GlobalScope.fposmod] of this vector's components and [param mod].
</description>
</method>
<method name="posmodv" qualifiers="const">
<return type="Vector4" />
<param index="0" name="modv" type="Vector4" />
<description>
Returns a vector composed of the [method @GlobalScope.fposmod] of this vector's components and [param modv]'s components.
</description>
</method>
<method name="round" qualifiers="const">
<return type="Vector4" />
<description>
Returns a new vector with all components rounded to the nearest integer, with halfway cases rounded away from zero.
</description>
</method>
<method name="sign" qualifiers="const">
<return type="Vector4" />
<description>
Returns a new vector with each component set to [code]1.0[/code] if it's positive, [code]-1.0[/code] if it's negative, and [code]0.0[/code] if it's zero. The result is identical to calling [method @GlobalScope.sign] on each component.
</description>
</method>
<method name="snapped" qualifiers="const">
<return type="Vector4" />
<param index="0" name="step" type="Vector4" />
<description>
Returns a new vector with each component snapped to the nearest multiple of the corresponding component in [param step]. This can also be used to round the components to an arbitrary number of decimals.
</description>
</method>
</methods>
<members>
<member name="w" type="float" setter="" getter="" default="0.0">
The vector's W component. Also accessible by using the index position [code][3][/code].
</member>
<member name="x" type="float" setter="" getter="" default="0.0">
The vector's X component. Also accessible by using the index position [code][0][/code].
</member>
<member name="y" type="float" setter="" getter="" default="0.0">
The vector's Y component. Also accessible by using the index position [code][1][/code].
</member>
<member name="z" type="float" setter="" getter="" default="0.0">
The vector's Z component. Also accessible by using the index position [code][2][/code].
</member>
</members>
<constants>
<constant name="AXIS_X" value="0">
Enumerated value for the X axis. Returned by [method max_axis_index] and [method min_axis_index].
</constant>
<constant name="AXIS_Y" value="1">
Enumerated value for the Y axis. Returned by [method max_axis_index] and [method min_axis_index].
</constant>
<constant name="AXIS_Z" value="2">
Enumerated value for the Z axis. Returned by [method max_axis_index] and [method min_axis_index].
</constant>
<constant name="AXIS_W" value="3">
Enumerated value for the W axis. Returned by [method max_axis_index] and [method min_axis_index].
</constant>
<constant name="ZERO" value="Vector4(0, 0, 0, 0)">
Zero vector, a vector with all components set to [code]0[/code].
</constant>
<constant name="ONE" value="Vector4(1, 1, 1, 1)">
One vector, a vector with all components set to [code]1[/code].
</constant>
<constant name="INF" value="Vector4(inf, inf, inf, inf)">
Infinity vector, a vector with all components set to [constant @GDScript.INF].
</constant>
</constants>
<operators>
<operator name="operator !=">
<return type="bool" />
<param index="0" name="right" type="Vector4" />
<description>
Returns [code]true[/code] if the vectors are not equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
[b]Note:[/b] Vectors with [constant @GDScript.NAN] elements don't behave the same as other vectors. Therefore, the results from this operator may not be accurate if NaNs are included.
</description>
</operator>
<operator name="operator *">
<return type="Vector4" />
<param index="0" name="right" type="Projection" />
<description>
Transforms (multiplies) the [Vector4] by the transpose of the given [Projection] matrix.
For transforming by inverse of a projection [code]projection.inverse() * vector[/code] can be used instead. See [method Projection.inverse].
</description>
</operator>
<operator name="operator *">
<return type="Vector4" />
<param index="0" name="right" type="Vector4" />
<description>
Multiplies each component of the [Vector4] by the components of the given [Vector4].
[codeblock]
print(Vector4(10, 20, 30, 40) * Vector4(3, 4, 5, 6)) # Prints "(30, 80, 150, 240)"
[/codeblock]
</description>
</operator>
<operator name="operator *">
<return type="Vector4" />
<param index="0" name="right" type="float" />
<description>
Multiplies each component of the [Vector4] by the given [float].
[codeblock]
print(Vector4(10, 20, 30, 40) * 2) # Prints "(20, 40, 60, 80)"
[/codeblock]
</description>
</operator>
<operator name="operator *">
<return type="Vector4" />
<param index="0" name="right" type="int" />
<description>
Multiplies each component of the [Vector4] by the given [int].
</description>
</operator>
<operator name="operator +">
<return type="Vector4" />
<param index="0" name="right" type="Vector4" />
<description>
Adds each component of the [Vector4] by the components of the given [Vector4].
[codeblock]
print(Vector4(10, 20, 30, 40) + Vector4(3, 4, 5, 6)) # Prints "(13, 24, 35, 46)"
[/codeblock]
</description>
</operator>
<operator name="operator -">
<return type="Vector4" />
<param index="0" name="right" type="Vector4" />
<description>
Subtracts each component of the [Vector4] by the components of the given [Vector4].
[codeblock]
print(Vector4(10, 20, 30, 40) - Vector4(3, 4, 5, 6)) # Prints "(7, 16, 25, 34)"
[/codeblock]
</description>
</operator>
<operator name="operator /">
<return type="Vector4" />
<param index="0" name="right" type="Vector4" />
<description>
Divides each component of the [Vector4] by the components of the given [Vector4].
[codeblock]
print(Vector4(10, 20, 30, 40) / Vector4(2, 5, 3, 4)) # Prints "(5, 4, 10, 10)"
[/codeblock]
</description>
</operator>
<operator name="operator /">
<return type="Vector4" />
<param index="0" name="right" type="float" />
<description>
Divides each component of the [Vector4] by the given [float].
[codeblock]
print(Vector4(10, 20, 30, 40) / 2 # Prints "(5, 10, 15, 20)"
[/codeblock]
</description>
</operator>
<operator name="operator /">
<return type="Vector4" />
<param index="0" name="right" type="int" />
<description>
Divides each component of the [Vector4] by the given [int].
</description>
</operator>
<operator name="operator &lt;">
<return type="bool" />
<param index="0" name="right" type="Vector4" />
<description>
Compares two [Vector4] vectors by first checking if the X value of the left vector is less than the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, Z values of the two vectors, and then with the W values. This operator is useful for sorting vectors.
[b]Note:[/b] Vectors with [constant @GDScript.NAN] elements don't behave the same as other vectors. Therefore, the results from this operator may not be accurate if NaNs are included.
</description>
</operator>
<operator name="operator &lt;=">
<return type="bool" />
<param index="0" name="right" type="Vector4" />
<description>
Compares two [Vector4] vectors by first checking if the X value of the left vector is less than or equal to the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, Z values of the two vectors, and then with the W values. This operator is useful for sorting vectors.
[b]Note:[/b] Vectors with [constant @GDScript.NAN] elements don't behave the same as other vectors. Therefore, the results from this operator may not be accurate if NaNs are included.
</description>
</operator>
<operator name="operator ==">
<return type="bool" />
<param index="0" name="right" type="Vector4" />
<description>
Returns [code]true[/code] if the vectors are exactly equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
[b]Note:[/b] Vectors with [constant @GDScript.NAN] elements don't behave the same as other vectors. Therefore, the results from this operator may not be accurate if NaNs are included.
</description>
</operator>
<operator name="operator &gt;">
<return type="bool" />
<param index="0" name="right" type="Vector4" />
<description>
Compares two [Vector4] vectors by first checking if the X value of the left vector is greater than the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, Z values of the two vectors, and then with the W values. This operator is useful for sorting vectors.
[b]Note:[/b] Vectors with [constant @GDScript.NAN] elements don't behave the same as other vectors. Therefore, the results from this operator may not be accurate if NaNs are included.
</description>
</operator>
<operator name="operator &gt;=">
<return type="bool" />
<param index="0" name="right" type="Vector4" />
<description>
Compares two [Vector4] vectors by first checking if the X value of the left vector is greater than or equal to the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, Z values of the two vectors, and then with the W values. This operator is useful for sorting vectors.
[b]Note:[/b] Vectors with [constant @GDScript.NAN] elements don't behave the same as other vectors. Therefore, the results from this operator may not be accurate if NaNs are included.
</description>
</operator>
<operator name="operator []">
<return type="float" />
<param index="0" name="index" type="int" />
<description>
Access vector components using their [param index]. [code]v[0][/code] is equivalent to [code]v.x[/code], [code]v[1][/code] is equivalent to [code]v.y[/code], [code]v[2][/code] is equivalent to [code]v.z[/code], and [code]v[3][/code] is equivalent to [code]v.w[/code].
</description>
</operator>
<operator name="operator unary+">
<return type="Vector4" />
<description>
Returns the same value as if the [code]+[/code] was not there. Unary [code]+[/code] does nothing, but sometimes it can make your code more readable.
</description>
</operator>
<operator name="operator unary-">
<return type="Vector4" />
<description>
Returns the negative value of the [Vector4]. This is the same as writing [code]Vector4(-v.x, -v.y, -v.z, -v.w)[/code]. This operation flips the direction of the vector while keeping the same magnitude. With floats, the number zero can be either positive or negative.
</description>
</operator>
</operators>
</class>