virtualx-engine/servers/rendering/renderer_rd/shaders/effects/blur_raster.glsl
clayjohn 8e41221404 Use raster versions of copy effects for 2D operations when using the mobile renderer
This PR implements a few basic copy operations in raster that weren't available before
2022-11-10 12:47:26 -08:00

149 lines
5.4 KiB
GLSL

/* clang-format off */
#[vertex]
#version 450
#VERSION_DEFINES
#include "blur_raster_inc.glsl"
layout(location = 0) out vec2 uv_interp;
/* clang-format on */
void main() {
vec2 base_arr[4] = vec2[](vec2(0.0, 0.0), vec2(0.0, 1.0), vec2(1.0, 1.0), vec2(1.0, 0.0));
uv_interp = base_arr[gl_VertexIndex];
gl_Position = vec4(uv_interp * 2.0 - 1.0, 0.0, 1.0);
}
/* clang-format off */
#[fragment]
#version 450
#VERSION_DEFINES
#include "blur_raster_inc.glsl"
layout(location = 0) in vec2 uv_interp;
/* clang-format on */
layout(set = 0, binding = 0) uniform sampler2D source_color;
#ifdef GLOW_USE_AUTO_EXPOSURE
layout(set = 1, binding = 0) uniform sampler2D source_auto_exposure;
#endif
layout(location = 0) out vec4 frag_color;
void main() {
// We do not apply our color scale for our mobile renderer here, we'll leave our colors at half brightness and apply scale in the tonemap raster.
#ifdef MODE_MIPMAP
vec2 pix_size = blur.pixel_size;
vec4 color = texture(source_color, uv_interp + vec2(-0.5, -0.5) * pix_size);
color += texture(source_color, uv_interp + vec2(0.5, -0.5) * pix_size);
color += texture(source_color, uv_interp + vec2(0.5, 0.5) * pix_size);
color += texture(source_color, uv_interp + vec2(-0.5, 0.5) * pix_size);
frag_color = color / 4.0;
#endif
#ifdef MODE_GAUSSIAN_BLUR
// For Gaussian Blur we use 13 taps in a single pass instead of 12 taps over 2 passes.
// This minimizes the number of times we change framebuffers which is very important for mobile.
// Source: http://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-warfare
vec4 A = texture(source_color, uv_interp + blur.pixel_size * vec2(-1.0, -1.0));
vec4 B = texture(source_color, uv_interp + blur.pixel_size * vec2(0.0, -1.0));
vec4 C = texture(source_color, uv_interp + blur.pixel_size * vec2(1.0, -1.0));
vec4 D = texture(source_color, uv_interp + blur.pixel_size * vec2(-0.5, -0.5));
vec4 E = texture(source_color, uv_interp + blur.pixel_size * vec2(0.5, -0.5));
vec4 F = texture(source_color, uv_interp + blur.pixel_size * vec2(-1.0, 0.0));
vec4 G = texture(source_color, uv_interp);
vec4 H = texture(source_color, uv_interp + blur.pixel_size * vec2(1.0, 0.0));
vec4 I = texture(source_color, uv_interp + blur.pixel_size * vec2(-0.5, 0.5));
vec4 J = texture(source_color, uv_interp + blur.pixel_size * vec2(0.5, 0.5));
vec4 K = texture(source_color, uv_interp + blur.pixel_size * vec2(-1.0, 1.0));
vec4 L = texture(source_color, uv_interp + blur.pixel_size * vec2(0.0, 1.0));
vec4 M = texture(source_color, uv_interp + blur.pixel_size * vec2(1.0, 1.0));
float base_weight = 0.5 / 4.0;
float lesser_weight = 0.125 / 4.0;
frag_color = (D + E + I + J) * base_weight;
frag_color += (A + B + G + F) * lesser_weight;
frag_color += (B + C + H + G) * lesser_weight;
frag_color += (F + G + L + K) * lesser_weight;
frag_color += (G + H + M + L) * lesser_weight;
#endif
#ifdef MODE_GAUSSIAN_GLOW
//Glow uses larger sigma 1 for a more rounded blur effect
#define GLOW_ADD(m_ofs, m_mult) \
{ \
vec2 ofs = uv_interp + m_ofs * pix_size; \
vec4 c = texture(source_color, ofs) * m_mult; \
if (any(lessThan(ofs, vec2(0.0))) || any(greaterThan(ofs, vec2(1.0)))) { \
c *= 0.0; \
} \
color += c; \
}
if (bool(blur.flags & FLAG_HORIZONTAL)) {
vec2 pix_size = blur.pixel_size;
pix_size *= 0.5; //reading from larger buffer, so use more samples
vec4 color = texture(source_color, uv_interp + vec2(0.0, 0.0) * pix_size) * 0.174938;
GLOW_ADD(vec2(1.0, 0.0), 0.165569);
GLOW_ADD(vec2(2.0, 0.0), 0.140367);
GLOW_ADD(vec2(3.0, 0.0), 0.106595);
GLOW_ADD(vec2(-1.0, 0.0), 0.165569);
GLOW_ADD(vec2(-2.0, 0.0), 0.140367);
GLOW_ADD(vec2(-3.0, 0.0), 0.106595);
// only do this in the horizontal pass, if we also do this in the vertical pass we're doubling up.
color *= blur.glow_strength;
frag_color = color;
} else {
vec2 pix_size = blur.pixel_size;
vec4 color = texture(source_color, uv_interp + vec2(0.0, 0.0) * pix_size) * 0.288713;
GLOW_ADD(vec2(0.0, 1.0), 0.233062);
GLOW_ADD(vec2(0.0, 2.0), 0.122581);
GLOW_ADD(vec2(0.0, -1.0), 0.233062);
GLOW_ADD(vec2(0.0, -2.0), 0.122581);
frag_color = color;
}
#undef GLOW_ADD
if (bool(blur.flags & FLAG_GLOW_FIRST_PASS)) {
// In the first pass bring back to correct color range else we're applying the wrong threshold
// in subsequent passes we can use it as is as we'd just be undoing it right after.
frag_color *= blur.luminance_multiplier;
#ifdef GLOW_USE_AUTO_EXPOSURE
frag_color /= texelFetch(source_auto_exposure, ivec2(0, 0), 0).r / blur.glow_auto_exposure_scale;
#endif
frag_color *= blur.glow_exposure;
float luminance = max(frag_color.r, max(frag_color.g, frag_color.b));
float feedback = max(smoothstep(blur.glow_hdr_threshold, blur.glow_hdr_threshold + blur.glow_hdr_scale, luminance), blur.glow_bloom);
frag_color = min(frag_color * feedback, vec4(blur.glow_luminance_cap)) / blur.luminance_multiplier;
}
#endif // MODE_GAUSSIAN_GLOW
#ifdef MODE_COPY
vec4 color = textureLod(source_color, uv_interp, 0.0);
frag_color = color;
#endif
}