a6f3bc7c69
VisualServer -> RenderingServer PhysicsServer -> PhysicsServer3D Physics2DServer -> PhysicsServer2D NavigationServer -> NavigationServer3D Navigation2DServer -> NavigationServer2D Also renamed corresponding files.
1718 lines
54 KiB
GLSL
1718 lines
54 KiB
GLSL
/* clang-format off */
|
|
[vertex]
|
|
|
|
#version 450
|
|
|
|
VERSION_DEFINES
|
|
|
|
#include "scene_high_end_inc.glsl"
|
|
|
|
/* INPUT ATTRIBS */
|
|
|
|
layout(location = 0) in vec3 vertex_attrib;
|
|
/* clang-format on */
|
|
layout(location = 1) in vec3 normal_attrib;
|
|
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
layout(location = 2) in vec4 tangent_attrib;
|
|
#endif
|
|
|
|
#if defined(COLOR_USED)
|
|
layout(location = 3) in vec4 color_attrib;
|
|
#endif
|
|
|
|
#if defined(UV_USED)
|
|
layout(location = 4) in vec2 uv_attrib;
|
|
#endif
|
|
|
|
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
|
|
layout(location = 5) in vec2 uv2_attrib;
|
|
#endif
|
|
|
|
layout(location = 6) in uvec4 bone_attrib; // always bound, even if unused
|
|
|
|
/* Varyings */
|
|
|
|
layout(location = 0) out vec3 vertex_interp;
|
|
layout(location = 1) out vec3 normal_interp;
|
|
|
|
#if defined(COLOR_USED)
|
|
layout(location = 2) out vec4 color_interp;
|
|
#endif
|
|
|
|
#if defined(UV_USED)
|
|
layout(location = 3) out vec2 uv_interp;
|
|
#endif
|
|
|
|
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
|
|
layout(location = 4) out vec2 uv2_interp;
|
|
#endif
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
layout(location = 5) out vec3 tangent_interp;
|
|
layout(location = 6) out vec3 binormal_interp;
|
|
#endif
|
|
|
|
#ifdef USE_MATERIAL_UNIFORMS
|
|
layout(set = 5, binding = 0, std140) uniform MaterialUniforms{
|
|
/* clang-format off */
|
|
MATERIAL_UNIFORMS
|
|
/* clang-format on */
|
|
} material;
|
|
#endif
|
|
|
|
/* clang-format off */
|
|
|
|
VERTEX_SHADER_GLOBALS
|
|
|
|
/* clang-format on */
|
|
|
|
// FIXME: This triggers a Mesa bug that breaks rendering, so disabled for now.
|
|
// See GH-13450 and https://bugs.freedesktop.org/show_bug.cgi?id=100316
|
|
invariant gl_Position;
|
|
|
|
layout(location = 7) flat out uint instance_index;
|
|
|
|
#ifdef MODE_DUAL_PARABOLOID
|
|
|
|
layout(location = 8) out float dp_clip;
|
|
|
|
#endif
|
|
|
|
void main() {
|
|
|
|
instance_index = draw_call.instance_index;
|
|
vec4 instance_custom = vec4(0.0);
|
|
#if defined(COLOR_USED)
|
|
color_interp = color_attrib;
|
|
#endif
|
|
|
|
mat4 world_matrix = instances.data[instance_index].transform;
|
|
mat3 world_normal_matrix = mat3(instances.data[instance_index].normal_transform);
|
|
|
|
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH)) {
|
|
//multimesh, instances are for it
|
|
uint offset = (instances.data[instance_index].flags >> INSTANCE_FLAGS_MULTIMESH_STRIDE_SHIFT) & INSTANCE_FLAGS_MULTIMESH_STRIDE_MASK;
|
|
offset *= gl_InstanceIndex;
|
|
|
|
mat4 matrix;
|
|
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) {
|
|
matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0));
|
|
offset += 2;
|
|
} else {
|
|
matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], transforms.data[offset + 2], vec4(0.0, 0.0, 0.0, 1.0));
|
|
offset += 3;
|
|
}
|
|
|
|
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_COLOR)) {
|
|
#ifdef COLOR_USED
|
|
color_interp *= transforms.data[offset];
|
|
#endif
|
|
offset += 1;
|
|
}
|
|
|
|
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA)) {
|
|
instance_custom = transforms.data[offset];
|
|
}
|
|
|
|
//transpose
|
|
matrix = transpose(matrix);
|
|
world_matrix = world_matrix * matrix;
|
|
world_normal_matrix = world_normal_matrix * mat3(matrix);
|
|
|
|
} else {
|
|
//not a multimesh, instances are for multiple draw calls
|
|
instance_index += gl_InstanceIndex;
|
|
}
|
|
|
|
vec3 vertex = vertex_attrib;
|
|
vec3 normal = normal_attrib;
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
vec3 tangent = tangent_attrib.xyz;
|
|
float binormalf = tangent_attrib.a;
|
|
vec3 binormal = normalize(cross(normal, tangent) * binormalf);
|
|
#endif
|
|
|
|
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_SKELETON)) {
|
|
//multimesh, instances are for it
|
|
|
|
uvec2 bones_01 = uvec2(bone_attrib.x & 0xFFFF, bone_attrib.x >> 16) * 3;
|
|
uvec2 bones_23 = uvec2(bone_attrib.y & 0xFFFF, bone_attrib.y >> 16) * 3;
|
|
vec2 weights_01 = unpackUnorm2x16(bone_attrib.z);
|
|
vec2 weights_23 = unpackUnorm2x16(bone_attrib.w);
|
|
|
|
mat4 m = mat4(transforms.data[bones_01.x], transforms.data[bones_01.x + 1], transforms.data[bones_01.x + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_01.x;
|
|
m += mat4(transforms.data[bones_01.y], transforms.data[bones_01.y + 1], transforms.data[bones_01.y + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_01.y;
|
|
m += mat4(transforms.data[bones_23.x], transforms.data[bones_23.x + 1], transforms.data[bones_23.x + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_23.x;
|
|
m += mat4(transforms.data[bones_23.y], transforms.data[bones_23.y + 1], transforms.data[bones_23.y + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_23.y;
|
|
|
|
//reverse order because its transposed
|
|
vertex = (vec4(vertex, 1.0) * m).xyz;
|
|
normal = (vec4(normal, 0.0) * m).xyz;
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
|
|
tangent = (vec4(tangent, 0.0) * m).xyz;
|
|
binormal = (vec4(binormal, 0.0) * m).xyz;
|
|
#endif
|
|
}
|
|
|
|
#if defined(UV_USED)
|
|
uv_interp = uv_attrib;
|
|
#endif
|
|
|
|
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
|
|
uv2_interp = uv2_attrib;
|
|
#endif
|
|
|
|
#ifdef USE_OVERRIDE_POSITION
|
|
vec4 position;
|
|
#endif
|
|
|
|
mat4 projection_matrix = scene_data.projection_matrix;
|
|
|
|
//using world coordinates
|
|
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
|
|
|
|
vertex = (world_matrix * vec4(vertex, 1.0)).xyz;
|
|
|
|
normal = world_normal_matrix * normal;
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
|
|
tangent = world_normal_matrix * tangent;
|
|
binormal = world_normal_matrix * binormal;
|
|
|
|
#endif
|
|
#endif
|
|
|
|
float roughness = 1.0;
|
|
|
|
mat4 modelview = scene_data.inv_camera_matrix * world_matrix;
|
|
mat3 modelview_normal = mat3(scene_data.inv_camera_matrix) * world_normal_matrix;
|
|
|
|
{
|
|
/* clang-format off */
|
|
|
|
VERTEX_SHADER_CODE
|
|
|
|
/* clang-format on */
|
|
}
|
|
|
|
// using local coordinates (default)
|
|
#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
|
|
|
|
vertex = (modelview * vec4(vertex, 1.0)).xyz;
|
|
normal = modelview_normal * normal;
|
|
#endif
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
|
|
binormal = modelview_normal * binormal;
|
|
tangent = modelview_normal * tangent;
|
|
#endif
|
|
|
|
//using world coordinates
|
|
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
|
|
|
|
vertex = (scene_data.inv_camera_matrix * vec4(vertex, 1.0)).xyz;
|
|
normal = mat3(scene_data.inverse_normal_matrix) * normal;
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
|
|
binormal = mat3(scene_data.camera_inverse_binormal_matrix) * binormal;
|
|
tangent = mat3(scene_data.camera_inverse_tangent_matrix) * tangent;
|
|
#endif
|
|
#endif
|
|
|
|
vertex_interp = vertex;
|
|
normal_interp = normal;
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
tangent_interp = tangent;
|
|
binormal_interp = binormal;
|
|
#endif
|
|
|
|
#ifdef MODE_RENDER_DEPTH
|
|
|
|
#ifdef MODE_DUAL_PARABOLOID
|
|
|
|
vertex_interp.z *= scene_data.dual_paraboloid_side;
|
|
normal_interp.z *= scene_data.dual_paraboloid_side;
|
|
|
|
dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
|
|
|
|
//for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
|
|
|
|
vec3 vtx = vertex_interp + normalize(vertex_interp) * scene_data.z_offset;
|
|
float distance = length(vtx);
|
|
vtx = normalize(vtx);
|
|
vtx.xy /= 1.0 - vtx.z;
|
|
vtx.z = (distance / scene_data.z_far);
|
|
vtx.z = vtx.z * 2.0 - 1.0;
|
|
|
|
vertex_interp = vtx;
|
|
#else
|
|
|
|
float z_ofs = scene_data.z_offset;
|
|
z_ofs += max(0.0, 1.0 - abs(normalize(normal_interp).z)) * scene_data.z_slope_scale;
|
|
vertex_interp.z -= z_ofs;
|
|
|
|
#endif
|
|
|
|
#endif //MODE_RENDER_DEPTH
|
|
|
|
#ifdef USE_OVERRIDE_POSITION
|
|
gl_Position = position;
|
|
#else
|
|
gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
|
|
#endif
|
|
}
|
|
|
|
/* clang-format off */
|
|
[fragment]
|
|
|
|
#version 450
|
|
|
|
VERSION_DEFINES
|
|
|
|
#include "scene_high_end_inc.glsl"
|
|
|
|
/* Varyings */
|
|
|
|
layout(location = 0) in vec3 vertex_interp;
|
|
/* clang-format on */
|
|
layout(location = 1) in vec3 normal_interp;
|
|
|
|
#if defined(COLOR_USED)
|
|
layout(location = 2) in vec4 color_interp;
|
|
#endif
|
|
|
|
#if defined(UV_USED)
|
|
layout(location = 3) in vec2 uv_interp;
|
|
#endif
|
|
|
|
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
|
|
layout(location = 4) in vec2 uv2_interp;
|
|
#endif
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
layout(location = 5) in vec3 tangent_interp;
|
|
layout(location = 6) in vec3 binormal_interp;
|
|
#endif
|
|
|
|
layout(location = 7) flat in uint instance_index;
|
|
|
|
#ifdef MODE_DUAL_PARABOLOID
|
|
|
|
layout(location = 8) in float dp_clip;
|
|
|
|
#endif
|
|
|
|
//defines to keep compatibility with vertex
|
|
|
|
#define world_matrix instances.data[instance_index].transform
|
|
#define world_normal_matrix instances.data[instance_index].normal_transform
|
|
#define projection_matrix scene_data.projection_matrix
|
|
|
|
#ifdef USE_MATERIAL_UNIFORMS
|
|
layout(set = 5, binding = 0, std140) uniform MaterialUniforms{
|
|
/* clang-format off */
|
|
MATERIAL_UNIFORMS
|
|
/* clang-format on */
|
|
} material;
|
|
#endif
|
|
|
|
/* clang-format off */
|
|
|
|
FRAGMENT_SHADER_GLOBALS
|
|
|
|
/* clang-format on */
|
|
|
|
#ifdef MODE_RENDER_DEPTH
|
|
|
|
#ifdef MODE_RENDER_MATERIAL
|
|
|
|
layout(location = 0) out vec4 albedo_output_buffer;
|
|
layout(location = 1) out vec4 normal_output_buffer;
|
|
layout(location = 2) out vec4 orm_output_buffer;
|
|
layout(location = 3) out vec4 emission_output_buffer;
|
|
layout(location = 4) out float depth_output_buffer;
|
|
|
|
#endif
|
|
|
|
#ifdef MODE_RENDER_NORMAL
|
|
layout(location = 0) out vec4 normal_output_buffer;
|
|
#ifdef MODE_RENDER_ROUGHNESS
|
|
layout(location = 1) out float roughness_output_buffer;
|
|
#endif //MODE_RENDER_ROUGHNESS
|
|
#endif //MODE_RENDER_NORMAL
|
|
#else // RENDER DEPTH
|
|
|
|
#ifdef MODE_MULTIPLE_RENDER_TARGETS
|
|
|
|
layout(location = 0) out vec4 diffuse_buffer; //diffuse (rgb) and roughness
|
|
layout(location = 1) out vec4 specular_buffer; //specular and SSS (subsurface scatter)
|
|
#else
|
|
|
|
layout(location = 0) out vec4 frag_color;
|
|
#endif
|
|
|
|
#endif // RENDER DEPTH
|
|
|
|
// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V.
|
|
// We're dividing this factor off because the overall term we'll end up looks like
|
|
// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012):
|
|
//
|
|
// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V)
|
|
//
|
|
// We're basically regouping this as
|
|
//
|
|
// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)]
|
|
//
|
|
// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V.
|
|
//
|
|
// The contents of the D and G (G1) functions (GGX) are taken from
|
|
// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014).
|
|
// Eqns 71-72 and 85-86 (see also Eqns 43 and 80).
|
|
|
|
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
|
|
|
|
float G_GGX_2cos(float cos_theta_m, float alpha) {
|
|
// Schlick's approximation
|
|
// C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994)
|
|
// Eq. (19), although see Heitz (2014) the about the problems with his derivation.
|
|
// It nevertheless approximates GGX well with k = alpha/2.
|
|
float k = 0.5 * alpha;
|
|
return 0.5 / (cos_theta_m * (1.0 - k) + k);
|
|
|
|
// float cos2 = cos_theta_m * cos_theta_m;
|
|
// float sin2 = (1.0 - cos2);
|
|
// return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2));
|
|
}
|
|
|
|
float D_GGX(float cos_theta_m, float alpha) {
|
|
float alpha2 = alpha * alpha;
|
|
float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m;
|
|
return alpha2 / (M_PI * d * d);
|
|
}
|
|
|
|
float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
|
|
float cos2 = cos_theta_m * cos_theta_m;
|
|
float sin2 = (1.0 - cos2);
|
|
float s_x = alpha_x * cos_phi;
|
|
float s_y = alpha_y * sin_phi;
|
|
return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001);
|
|
}
|
|
|
|
float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
|
|
float cos2 = cos_theta_m * cos_theta_m;
|
|
float sin2 = (1.0 - cos2);
|
|
float r_x = cos_phi / alpha_x;
|
|
float r_y = sin_phi / alpha_y;
|
|
float d = cos2 + sin2 * (r_x * r_x + r_y * r_y);
|
|
return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001);
|
|
}
|
|
|
|
float SchlickFresnel(float u) {
|
|
float m = 1.0 - u;
|
|
float m2 = m * m;
|
|
return m2 * m2 * m; // pow(m,5)
|
|
}
|
|
|
|
float GTR1(float NdotH, float a) {
|
|
if (a >= 1.0) return 1.0 / M_PI;
|
|
float a2 = a * a;
|
|
float t = 1.0 + (a2 - 1.0) * NdotH * NdotH;
|
|
return (a2 - 1.0) / (M_PI * log(a2) * t);
|
|
}
|
|
|
|
vec3 F0(float metallic, float specular, vec3 albedo) {
|
|
float dielectric = 0.16 * specular * specular;
|
|
// use albedo * metallic as colored specular reflectance at 0 angle for metallic materials;
|
|
// see https://google.github.io/filament/Filament.md.html
|
|
return mix(vec3(dielectric), albedo, vec3(metallic));
|
|
}
|
|
|
|
void light_compute(vec3 N, vec3 L, vec3 V, vec3 light_color, vec3 attenuation, vec3 diffuse_color, float roughness, float metallic, float specular, float specular_blob_intensity,
|
|
#ifdef LIGHT_TRANSMISSION_USED
|
|
vec3 transmission,
|
|
#endif
|
|
#ifdef LIGHT_RIM_USED
|
|
float rim, float rim_tint,
|
|
#endif
|
|
#ifdef LIGHT_CLEARCOAT_USED
|
|
float clearcoat, float clearcoat_gloss,
|
|
#endif
|
|
#ifdef LIGHT_ANISOTROPY_USED
|
|
vec3 B, vec3 T, float anisotropy,
|
|
#endif
|
|
#ifdef USE_SHADOW_TO_OPACITY
|
|
inout float alpha,
|
|
#endif
|
|
inout vec3 diffuse_light, inout vec3 specular_light) {
|
|
|
|
#if defined(USE_LIGHT_SHADER_CODE)
|
|
// light is written by the light shader
|
|
|
|
vec3 normal = N;
|
|
vec3 albedo = diffuse_color;
|
|
vec3 light = L;
|
|
vec3 view = V;
|
|
|
|
/* clang-format off */
|
|
|
|
LIGHT_SHADER_CODE
|
|
|
|
/* clang-format on */
|
|
|
|
#else
|
|
float NdotL = dot(N, L);
|
|
float cNdotL = max(NdotL, 0.0); // clamped NdotL
|
|
float NdotV = dot(N, V);
|
|
float cNdotV = max(NdotV, 0.0);
|
|
|
|
#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
|
|
vec3 H = normalize(V + L);
|
|
#endif
|
|
|
|
#if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
|
|
float cNdotH = max(dot(N, H), 0.0);
|
|
#endif
|
|
|
|
#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
|
|
float cLdotH = max(dot(L, H), 0.0);
|
|
#endif
|
|
|
|
if (metallic < 1.0) {
|
|
#if defined(DIFFUSE_OREN_NAYAR)
|
|
vec3 diffuse_brdf_NL;
|
|
#else
|
|
float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
|
|
#endif
|
|
|
|
#if defined(DIFFUSE_LAMBERT_WRAP)
|
|
// energy conserving lambert wrap shader
|
|
diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
|
|
|
|
#elif defined(DIFFUSE_OREN_NAYAR)
|
|
|
|
{
|
|
// see http://mimosa-pudica.net/improved-oren-nayar.html
|
|
float LdotV = dot(L, V);
|
|
|
|
float s = LdotV - NdotL * NdotV;
|
|
float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
|
|
|
|
float sigma2 = roughness * roughness; // TODO: this needs checking
|
|
vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
|
|
float B = 0.45 * sigma2 / (sigma2 + 0.09);
|
|
|
|
diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
|
|
}
|
|
|
|
#elif defined(DIFFUSE_TOON)
|
|
|
|
diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL);
|
|
|
|
#elif defined(DIFFUSE_BURLEY)
|
|
|
|
{
|
|
float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5;
|
|
float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV);
|
|
float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL);
|
|
diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL;
|
|
/*
|
|
float energyBias = mix(roughness, 0.0, 0.5);
|
|
float energyFactor = mix(roughness, 1.0, 1.0 / 1.51);
|
|
float fd90 = energyBias + 2.0 * VoH * VoH * roughness;
|
|
float f0 = 1.0;
|
|
float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0);
|
|
float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0);
|
|
|
|
diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;
|
|
*/
|
|
}
|
|
#else
|
|
// lambert
|
|
diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
|
|
#endif
|
|
|
|
diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation;
|
|
|
|
#if defined(LIGHT_TRANSMISSION_USED)
|
|
diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * transmission * attenuation;
|
|
#endif
|
|
|
|
#if defined(LIGHT_RIM_USED)
|
|
float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0));
|
|
diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color;
|
|
#endif
|
|
}
|
|
|
|
if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely
|
|
|
|
// D
|
|
|
|
#if defined(SPECULAR_BLINN)
|
|
|
|
//normalized blinn
|
|
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
|
|
float blinn = pow(cNdotH, shininess) * cNdotL;
|
|
blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
|
|
float intensity = blinn;
|
|
|
|
specular_light += light_color * intensity * specular_blob_intensity * attenuation;
|
|
|
|
#elif defined(SPECULAR_PHONG)
|
|
|
|
vec3 R = normalize(-reflect(L, N));
|
|
float cRdotV = max(0.0, dot(R, V));
|
|
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
|
|
float phong = pow(cRdotV, shininess);
|
|
phong *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
|
|
float intensity = (phong) / max(4.0 * cNdotV * cNdotL, 0.75);
|
|
|
|
specular_light += light_color * intensity * specular_blob_intensity * attenuation;
|
|
|
|
#elif defined(SPECULAR_TOON)
|
|
|
|
vec3 R = normalize(-reflect(L, N));
|
|
float RdotV = dot(R, V);
|
|
float mid = 1.0 - roughness;
|
|
mid *= mid;
|
|
float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
|
|
diffuse_light += light_color * intensity * specular_blob_intensity * attenuation; // write to diffuse_light, as in toon shading you generally want no reflection
|
|
|
|
#elif defined(SPECULAR_DISABLED)
|
|
// none..
|
|
|
|
#elif defined(SPECULAR_SCHLICK_GGX)
|
|
// shlick+ggx as default
|
|
|
|
#if defined(LIGHT_ANISOTROPY_USED)
|
|
|
|
float alpha_ggx = roughness * roughness;
|
|
float aspect = sqrt(1.0 - anisotropy * 0.9);
|
|
float ax = alpha_ggx / aspect;
|
|
float ay = alpha_ggx * aspect;
|
|
float XdotH = dot(T, H);
|
|
float YdotH = dot(B, H);
|
|
float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH);
|
|
float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH);
|
|
|
|
#else
|
|
float alpha_ggx = roughness * roughness;
|
|
float D = D_GGX(cNdotH, alpha_ggx);
|
|
float G = G_GGX_2cos(cNdotL, alpha_ggx) * G_GGX_2cos(cNdotV, alpha_ggx);
|
|
#endif
|
|
// F
|
|
vec3 f0 = F0(metallic, specular, diffuse_color);
|
|
float cLdotH5 = SchlickFresnel(cLdotH);
|
|
vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0);
|
|
|
|
vec3 specular_brdf_NL = cNdotL * D * F * G;
|
|
|
|
specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
|
|
#endif
|
|
|
|
#if defined(LIGHT_CLEARCOAT_USED)
|
|
|
|
#if !defined(SPECULAR_SCHLICK_GGX)
|
|
float cLdotH5 = SchlickFresnel(cLdotH);
|
|
#endif
|
|
float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss));
|
|
float Fr = mix(.04, 1.0, cLdotH5);
|
|
float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25);
|
|
|
|
float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL;
|
|
|
|
specular_light += clearcoat_specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
|
|
#endif
|
|
}
|
|
|
|
#ifdef USE_SHADOW_TO_OPACITY
|
|
alpha = min(alpha, clamp(1.0 - length(attenuation), 0.0, 1.0));
|
|
#endif
|
|
|
|
#endif //defined(USE_LIGHT_SHADER_CODE)
|
|
}
|
|
|
|
#ifndef USE_NO_SHADOWS
|
|
|
|
float sample_shadow(texture2D shadow, vec2 shadow_pixel_size, vec4 coord) {
|
|
|
|
//todo optimize
|
|
vec2 pos = coord.xy;
|
|
float depth = coord.z;
|
|
|
|
#ifdef SHADOW_MODE_PCF_13
|
|
|
|
float avg = textureProj(shadow, vec4(pos, depth, 1.0));
|
|
avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + vec2(shadow_pixel_size.x, 0.0), depth, 1.0));
|
|
avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + vec2(-shadow_pixel_size.x, 0.0), depth, 1.0));
|
|
avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + vec2(0.0, shadow_pixel_size.y), depth, 1.0));
|
|
avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + vec2(0.0, -shadow_pixel_size.y), depth, 1.0));
|
|
avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + vec2(shadow_pixel_size.x, shadow_pixel_size.y), depth, 1.0));
|
|
avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + vec2(-shadow_pixel_size.x, shadow_pixel_size.y), depth, 1.0));
|
|
avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + vec2(shadow_pixel_size.x, -shadow_pixel_size.y), depth, 1.0));
|
|
avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + vec2(-shadow_pixel_size.x, -shadow_pixel_size.y), depth, 1.0));
|
|
avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + vec2(shadow_pixel_size.x * 2.0, 0.0), depth, 1.0));
|
|
avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + vec2(-shadow_pixel_size.x * 2.0, 0.0), depth, 1.0));
|
|
avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + vec2(0.0, shadow_pixel_size.y * 2.0), depth, 1.0));
|
|
avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + vec2(0.0, -shadow_pixel_size.y * 2.0), depth, 1.0));
|
|
return avg * (1.0 / 13.0);
|
|
#endif
|
|
|
|
#ifdef SHADOW_MODE_PCF_5
|
|
|
|
float avg = textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0));
|
|
avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + vec2(shadow_pixel_size.x, 0.0), depth, 1.0));
|
|
avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + vec2(-shadow_pixel_size.x, 0.0), depth, 1.0));
|
|
avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + vec2(0.0, shadow_pixel_size.y), depth, 1.0));
|
|
avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + vec2(0.0, -shadow_pixel_size.y), depth, 1.0));
|
|
return avg * (1.0 / 5.0);
|
|
|
|
#endif
|
|
|
|
#if !defined(SHADOW_MODE_PCF_5) || !defined(SHADOW_MODE_PCF_13)
|
|
|
|
return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0));
|
|
|
|
#endif
|
|
}
|
|
|
|
#endif //USE_NO_SHADOWS
|
|
|
|
void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 albedo, float roughness, float metallic, float specular, float p_blob_intensity,
|
|
#ifdef LIGHT_TRANSMISSION_USED
|
|
vec3 transmission,
|
|
#endif
|
|
#ifdef LIGHT_RIM_USED
|
|
float rim, float rim_tint,
|
|
#endif
|
|
#ifdef LIGHT_CLEARCOAT_USED
|
|
float clearcoat, float clearcoat_gloss,
|
|
#endif
|
|
#ifdef LIGHT_ANISOTROPY_USED
|
|
vec3 binormal, vec3 tangent, float anisotropy,
|
|
#endif
|
|
#ifdef USE_SHADOW_TO_OPACITY
|
|
inout float alpha,
|
|
#endif
|
|
inout vec3 diffuse_light, inout vec3 specular_light) {
|
|
|
|
vec3 light_rel_vec = lights.data[idx].position - vertex;
|
|
float light_length = length(light_rel_vec);
|
|
float normalized_distance = light_length * lights.data[idx].inv_radius;
|
|
vec2 attenuation_energy = unpackHalf2x16(lights.data[idx].attenuation_energy);
|
|
float omni_attenuation = pow(max(1.0 - normalized_distance, 0.0), attenuation_energy.x);
|
|
vec3 light_attenuation = vec3(omni_attenuation);
|
|
vec4 color_specular = unpackUnorm4x8(lights.data[idx].color_specular);
|
|
color_specular.rgb *= attenuation_energy.y;
|
|
|
|
#ifndef USE_NO_SHADOWS
|
|
vec4 shadow_color_enabled = unpackUnorm4x8(lights.data[idx].shadow_color_enabled);
|
|
if (shadow_color_enabled.w > 0.5) {
|
|
// there is a shadowmap
|
|
|
|
vec4 splane = (lights.data[idx].shadow_matrix * vec4(vertex, 1.0));
|
|
float shadow_len = length(splane);
|
|
splane = normalize(splane);
|
|
vec4 clamp_rect = lights.data[idx].atlas_rect;
|
|
|
|
if (splane.z >= 0.0) {
|
|
|
|
splane.z += 1.0;
|
|
|
|
clamp_rect.y += clamp_rect.w;
|
|
|
|
} else {
|
|
|
|
splane.z = 1.0 - splane.z;
|
|
}
|
|
|
|
splane.xy /= splane.z;
|
|
splane.xy = splane.xy * 0.5 + 0.5;
|
|
splane.z = shadow_len * lights.data[idx].inv_radius;
|
|
splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
|
|
splane.w = 1.0; //needed? i think it should be 1 already
|
|
float shadow = sample_shadow(shadow_atlas, scene_data.shadow_atlas_pixel_size, splane);
|
|
|
|
light_attenuation *= mix(shadow_color_enabled.rgb, vec3(1.0), shadow);
|
|
}
|
|
#endif //USE_NO_SHADOWS
|
|
|
|
light_compute(normal, normalize(light_rel_vec), eye_vec, color_specular.rgb, light_attenuation, albedo, roughness, metallic, specular, color_specular.a * p_blob_intensity,
|
|
#ifdef LIGHT_TRANSMISSION_USED
|
|
transmission,
|
|
#endif
|
|
#ifdef LIGHT_RIM_USED
|
|
rim * omni_attenuation, rim_tint,
|
|
#endif
|
|
#ifdef LIGHT_CLEARCOAT_USED
|
|
clearcoat, clearcoat_gloss,
|
|
#endif
|
|
#ifdef LIGHT_ANISOTROPY_USED
|
|
binormal, tangent, anisotropy,
|
|
#endif
|
|
#ifdef USE_SHADOW_TO_OPACITY
|
|
alpha,
|
|
#endif
|
|
diffuse_light,
|
|
specular_light);
|
|
}
|
|
|
|
void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 albedo, float roughness, float metallic, float specular, float p_blob_intensity,
|
|
#ifdef LIGHT_TRANSMISSION_USED
|
|
vec3 transmission,
|
|
#endif
|
|
#ifdef LIGHT_RIM_USED
|
|
float rim, float rim_tint,
|
|
#endif
|
|
#ifdef LIGHT_CLEARCOAT_USED
|
|
float clearcoat, float clearcoat_gloss,
|
|
#endif
|
|
#ifdef LIGHT_ANISOTROPY_USED
|
|
vec3 binormal, vec3 tangent, float anisotropy,
|
|
#endif
|
|
#ifdef USE_SHADOW_TO_OPACITY
|
|
inout float alpha,
|
|
#endif
|
|
inout vec3 diffuse_light,
|
|
inout vec3 specular_light) {
|
|
|
|
vec3 light_rel_vec = lights.data[idx].position - vertex;
|
|
float light_length = length(light_rel_vec);
|
|
float normalized_distance = light_length * lights.data[idx].inv_radius;
|
|
vec2 attenuation_energy = unpackHalf2x16(lights.data[idx].attenuation_energy);
|
|
float spot_attenuation = pow(max(1.0 - normalized_distance, 0.001), attenuation_energy.x);
|
|
vec3 spot_dir = lights.data[idx].direction;
|
|
vec2 spot_att_angle = unpackHalf2x16(lights.data[idx].cone_attenuation_angle);
|
|
float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_att_angle.y);
|
|
float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_att_angle.y));
|
|
spot_attenuation *= 1.0 - pow(spot_rim, spot_att_angle.x);
|
|
vec3 light_attenuation = vec3(spot_attenuation);
|
|
vec4 color_specular = unpackUnorm4x8(lights.data[idx].color_specular);
|
|
color_specular.rgb *= attenuation_energy.y;
|
|
|
|
/*
|
|
if (lights.data[idx].atlas_rect!=vec4(0.0)) {
|
|
//use projector texture
|
|
}
|
|
*/
|
|
#ifndef USE_NO_SHADOWS
|
|
vec4 shadow_color_enabled = unpackUnorm4x8(lights.data[idx].shadow_color_enabled);
|
|
if (shadow_color_enabled.w > 0.5) {
|
|
//there is a shadowmap
|
|
vec4 splane = (lights.data[idx].shadow_matrix * vec4(vertex, 1.0));
|
|
splane /= splane.w;
|
|
float shadow = sample_shadow(shadow_atlas, scene_data.shadow_atlas_pixel_size, splane);
|
|
|
|
light_attenuation *= mix(shadow_color_enabled.rgb, vec3(1.0), shadow);
|
|
}
|
|
|
|
#endif //USE_NO_SHADOWS
|
|
|
|
light_compute(normal, normalize(light_rel_vec), eye_vec, color_specular.rgb, light_attenuation, albedo, roughness, metallic, specular, color_specular.a * p_blob_intensity,
|
|
#ifdef LIGHT_TRANSMISSION_USED
|
|
transmission,
|
|
#endif
|
|
#ifdef LIGHT_RIM_USED
|
|
rim * spot_attenuation, rim_tint,
|
|
#endif
|
|
#ifdef LIGHT_CLEARCOAT_USED
|
|
clearcoat, clearcoat_gloss,
|
|
#endif
|
|
#ifdef LIGHT_ANISOTROPY_USED
|
|
binormal, tangent, anisotropy,
|
|
#endif
|
|
#ifdef USE_SHADOW_TO_OPACITY
|
|
alpha,
|
|
#endif
|
|
diffuse_light, specular_light);
|
|
}
|
|
|
|
void reflection_process(uint ref_index, vec3 vertex, vec3 normal, float roughness, vec3 ambient_light, vec3 specular_light, inout vec4 ambient_accum, inout vec4 reflection_accum) {
|
|
|
|
vec3 box_extents = reflections.data[ref_index].box_extents;
|
|
vec3 local_pos = (reflections.data[ref_index].local_matrix * vec4(vertex, 1.0)).xyz;
|
|
|
|
if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box
|
|
return;
|
|
}
|
|
|
|
vec3 ref_vec = normalize(reflect(vertex, normal));
|
|
|
|
vec3 inner_pos = abs(local_pos / box_extents);
|
|
float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
|
|
//make blend more rounded
|
|
blend = mix(length(inner_pos), blend, blend);
|
|
blend *= blend;
|
|
blend = max(0.0, 1.0 - blend);
|
|
|
|
if (reflections.data[ref_index].params.x > 0.0) { // compute reflection
|
|
|
|
vec3 local_ref_vec = (reflections.data[ref_index].local_matrix * vec4(ref_vec, 0.0)).xyz;
|
|
|
|
if (reflections.data[ref_index].params.w > 0.5) { //box project
|
|
|
|
vec3 nrdir = normalize(local_ref_vec);
|
|
vec3 rbmax = (box_extents - local_pos) / nrdir;
|
|
vec3 rbmin = (-box_extents - local_pos) / nrdir;
|
|
|
|
vec3 rbminmax = mix(rbmin, rbmax, greaterThan(nrdir, vec3(0.0, 0.0, 0.0)));
|
|
|
|
float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
|
|
vec3 posonbox = local_pos + nrdir * fa;
|
|
local_ref_vec = posonbox - reflections.data[ref_index].box_offset;
|
|
}
|
|
|
|
vec4 reflection;
|
|
|
|
reflection.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_ref_vec, reflections.data[ref_index].index), roughness * MAX_ROUGHNESS_LOD).rgb;
|
|
|
|
if (reflections.data[ref_index].params.z < 0.5) {
|
|
reflection.rgb = mix(specular_light, reflection.rgb, blend);
|
|
}
|
|
|
|
reflection.rgb *= reflections.data[ref_index].params.x;
|
|
reflection.a = blend;
|
|
reflection.rgb *= reflection.a;
|
|
|
|
reflection_accum += reflection;
|
|
}
|
|
|
|
#if !defined(USE_LIGHTMAP) && !defined(USE_VOXEL_CONE_TRACING)
|
|
if (reflections.data[ref_index].ambient.a > 0.0) { //compute ambient using skybox
|
|
|
|
vec3 local_amb_vec = (reflections.data[ref_index].local_matrix * vec4(normal, 0.0)).xyz;
|
|
|
|
vec4 ambient_out;
|
|
|
|
ambient_out.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_amb_vec, reflections.data[ref_index].index), MAX_ROUGHNESS_LOD).rgb;
|
|
|
|
ambient_out.a = blend;
|
|
ambient_out.rgb = mix(reflections.data[ref_index].ambient.rgb, ambient_out.rgb, reflections.data[ref_index].ambient.a);
|
|
if (reflections.data[ref_index].params.z < 0.5) {
|
|
ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend);
|
|
}
|
|
|
|
ambient_out.rgb *= ambient_out.a;
|
|
ambient_accum += ambient_out;
|
|
} else {
|
|
|
|
vec4 ambient_out;
|
|
ambient_out.a = blend;
|
|
ambient_out.rgb = reflections.data[ref_index].ambient.rgb;
|
|
if (reflections.data[ref_index].params.z < 0.5) {
|
|
ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend);
|
|
}
|
|
ambient_out.rgb *= ambient_out.a;
|
|
ambient_accum += ambient_out;
|
|
}
|
|
#endif //USE_LIGHTMAP or VCT
|
|
}
|
|
|
|
#ifdef USE_VOXEL_CONE_TRACING
|
|
|
|
//standard voxel cone trace
|
|
vec4 voxel_cone_trace(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
|
|
|
|
float dist = p_bias;
|
|
vec4 color = vec4(0.0);
|
|
|
|
while (dist < max_distance && color.a < 0.95) {
|
|
float diameter = max(1.0, 2.0 * tan_half_angle * dist);
|
|
vec3 uvw_pos = (pos + dist * direction) * cell_size;
|
|
float half_diameter = diameter * 0.5;
|
|
//check if outside, then break
|
|
if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + half_diameter * cell_size)))) {
|
|
break;
|
|
}
|
|
vec4 scolor = textureLod(sampler3D(probe, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2(diameter));
|
|
float a = (1.0 - color.a);
|
|
color += a * scolor;
|
|
dist += half_diameter;
|
|
}
|
|
|
|
return color;
|
|
}
|
|
|
|
#ifndef GI_PROBE_HIGH_QUALITY
|
|
//faster version for 45 degrees
|
|
|
|
#ifdef GI_PROBE_USE_ANISOTROPY
|
|
|
|
vec4 voxel_cone_trace_anisotropic_45_degrees(texture3D probe, texture3D aniso_pos, texture3D aniso_neg, vec3 normal, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
|
|
|
|
float dist = p_bias;
|
|
vec4 color = vec4(0.0);
|
|
float radius = max(0.5, tan_half_angle * dist);
|
|
float lod_level = log2(radius * 2.0);
|
|
|
|
while (dist < max_distance && color.a < 0.95) {
|
|
vec3 uvw_pos = (pos + dist * direction) * cell_size;
|
|
//check if outside, then break
|
|
if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + radius * cell_size)))) {
|
|
break;
|
|
}
|
|
|
|
vec4 scolor = textureLod(sampler3D(probe, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, lod_level);
|
|
vec3 aniso_neg = textureLod(sampler3D(aniso_neg, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, lod_level).rgb;
|
|
vec3 aniso_pos = textureLod(sampler3D(aniso_pos, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, lod_level).rgb;
|
|
|
|
scolor.rgb *= dot(max(vec3(0.0), (normal * aniso_pos)), vec3(1.0)) + dot(max(vec3(0.0), (-normal * aniso_neg)), vec3(1.0));
|
|
lod_level += 1.0;
|
|
|
|
float a = (1.0 - color.a);
|
|
scolor *= a;
|
|
color += scolor;
|
|
dist += radius;
|
|
radius = max(0.5, tan_half_angle * dist);
|
|
}
|
|
|
|
return color;
|
|
}
|
|
#else
|
|
|
|
vec4 voxel_cone_trace_45_degrees(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
|
|
|
|
float dist = p_bias;
|
|
vec4 color = vec4(0.0);
|
|
float radius = max(0.5, tan_half_angle * dist);
|
|
float lod_level = log2(radius * 2.0);
|
|
|
|
while (dist < max_distance && color.a < 0.95) {
|
|
vec3 uvw_pos = (pos + dist * direction) * cell_size;
|
|
|
|
//check if outside, then break
|
|
if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + radius * cell_size)))) {
|
|
break;
|
|
}
|
|
vec4 scolor = textureLod(sampler3D(probe, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, lod_level);
|
|
lod_level += 1.0;
|
|
|
|
float a = (1.0 - color.a);
|
|
scolor *= a;
|
|
color += scolor;
|
|
dist += radius;
|
|
radius = max(0.5, tan_half_angle * dist);
|
|
}
|
|
|
|
return color;
|
|
}
|
|
|
|
#endif
|
|
|
|
#elif defined(GI_PROBE_USE_ANISOTROPY)
|
|
|
|
//standard voxel cone trace
|
|
vec4 voxel_cone_trace_anisotropic(texture3D probe, texture3D aniso_pos, texture3D aniso_neg, vec3 normal, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
|
|
|
|
float dist = p_bias;
|
|
vec4 color = vec4(0.0);
|
|
|
|
while (dist < max_distance && color.a < 0.95) {
|
|
float diameter = max(1.0, 2.0 * tan_half_angle * dist);
|
|
vec3 uvw_pos = (pos + dist * direction) * cell_size;
|
|
float half_diameter = diameter * 0.5;
|
|
//check if outside, then break
|
|
if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + half_diameter * cell_size)))) {
|
|
break;
|
|
}
|
|
float log2_diameter = log2(diameter);
|
|
vec4 scolor = textureLod(sampler3D(probe, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2_diameter);
|
|
vec3 aniso_neg = textureLod(sampler3D(aniso_neg, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2_diameter).rgb;
|
|
vec3 aniso_pos = textureLod(sampler3D(aniso_pos, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2_diameter).rgb;
|
|
|
|
scolor.rgb *= dot(max(vec3(0.0), (normal * aniso_pos)), vec3(1.0)) + dot(max(vec3(0.0), (-normal * aniso_neg)), vec3(1.0));
|
|
|
|
float a = (1.0 - color.a);
|
|
scolor *= a;
|
|
color += scolor;
|
|
dist += half_diameter;
|
|
}
|
|
|
|
return color;
|
|
}
|
|
|
|
#endif
|
|
|
|
void gi_probe_compute(uint index, vec3 position, vec3 normal, vec3 ref_vec, mat3 normal_xform, float roughness, vec3 ambient, vec3 environment, inout vec4 out_spec, inout vec4 out_diff) {
|
|
|
|
position = (gi_probes.data[index].xform * vec4(position, 1.0)).xyz;
|
|
ref_vec = normalize((gi_probes.data[index].xform * vec4(ref_vec, 0.0)).xyz);
|
|
normal = normalize((gi_probes.data[index].xform * vec4(normal, 0.0)).xyz);
|
|
|
|
position += normal * gi_probes.data[index].normal_bias;
|
|
|
|
//this causes corrupted pixels, i have no idea why..
|
|
if (any(bvec2(any(lessThan(position, vec3(0.0))), any(greaterThan(position, gi_probes.data[index].bounds))))) {
|
|
return;
|
|
}
|
|
|
|
vec3 blendv = abs(position / gi_probes.data[index].bounds * 2.0 - 1.0);
|
|
float blend = clamp(1.0 - max(blendv.x, max(blendv.y, blendv.z)), 0.0, 1.0);
|
|
//float blend=1.0;
|
|
|
|
float max_distance = length(gi_probes.data[index].bounds);
|
|
vec3 cell_size = 1.0 / gi_probes.data[index].bounds;
|
|
|
|
//radiance
|
|
|
|
#ifdef GI_PROBE_HIGH_QUALITY
|
|
|
|
#define MAX_CONE_DIRS 6
|
|
vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
|
|
vec3(0.0, 0.0, 1.0),
|
|
vec3(0.866025, 0.0, 0.5),
|
|
vec3(0.267617, 0.823639, 0.5),
|
|
vec3(-0.700629, 0.509037, 0.5),
|
|
vec3(-0.700629, -0.509037, 0.5),
|
|
vec3(0.267617, -0.823639, 0.5));
|
|
|
|
float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15);
|
|
float cone_angle_tan = 0.577;
|
|
|
|
#elif defined(GI_PROBE_LOW_QUALITY)
|
|
|
|
#define MAX_CONE_DIRS 1
|
|
|
|
vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
|
|
vec3(0.0, 0.0, 1.0));
|
|
|
|
float cone_weights[MAX_CONE_DIRS] = float[](1.0);
|
|
float cone_angle_tan = 4; //~76 degrees
|
|
#else // MEDIUM QUALITY
|
|
|
|
#define MAX_CONE_DIRS 4
|
|
|
|
vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
|
|
vec3(0.707107, 0.0, 0.707107),
|
|
vec3(0.0, 0.707107, 0.707107),
|
|
vec3(-0.707107, 0.0, 0.707107),
|
|
vec3(0.0, -0.707107, 0.707107));
|
|
|
|
float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25);
|
|
float cone_angle_tan = 0.98269;
|
|
|
|
#endif
|
|
vec3 light = vec3(0.0);
|
|
|
|
for (int i = 0; i < MAX_CONE_DIRS; i++) {
|
|
|
|
vec3 dir = normalize((gi_probes.data[index].xform * vec4(normal_xform * cone_dirs[i], 0.0)).xyz);
|
|
|
|
#if defined(GI_PROBE_HIGH_QUALITY) || defined(GI_PROBE_LOW_QUALITY)
|
|
|
|
#ifdef GI_PROBE_USE_ANISOTROPY
|
|
vec4 cone_light = voxel_cone_trace_anisotropic(gi_probe_textures[gi_probes.data[index].texture_slot], gi_probe_textures[gi_probes.data[index].texture_slot + 1], gi_probe_textures[gi_probes.data[index].texture_slot + 2], normalize(mix(dir, normal, gi_probes.data[index].anisotropy_strength)), cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias);
|
|
#else
|
|
|
|
vec4 cone_light = voxel_cone_trace(gi_probe_textures[gi_probes.data[index].texture_slot], cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias);
|
|
|
|
#endif // GI_PROBE_USE_ANISOTROPY
|
|
|
|
#else
|
|
|
|
#ifdef GI_PROBE_USE_ANISOTROPY
|
|
vec4 cone_light = voxel_cone_trace_anisotropic_45_degrees(gi_probe_textures[gi_probes.data[index].texture_slot], gi_probe_textures[gi_probes.data[index].texture_slot + 1], gi_probe_textures[gi_probes.data[index].texture_slot + 2], normalize(mix(dir, normal, gi_probes.data[index].anisotropy_strength)), cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias);
|
|
#else
|
|
vec4 cone_light = voxel_cone_trace_45_degrees(gi_probe_textures[gi_probes.data[index].texture_slot], cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias);
|
|
#endif // GI_PROBE_USE_ANISOTROPY
|
|
|
|
#endif
|
|
if (gi_probes.data[index].blend_ambient) {
|
|
cone_light.rgb = mix(ambient, cone_light.rgb, min(1.0, cone_light.a / 0.95));
|
|
}
|
|
|
|
light += cone_weights[i] * cone_light.rgb;
|
|
}
|
|
|
|
light *= gi_probes.data[index].dynamic_range;
|
|
|
|
if (gi_probes.data[index].ambient_occlusion > 0.001) {
|
|
|
|
float size = 1.0 + gi_probes.data[index].ambient_occlusion_size * 7.0;
|
|
|
|
float taps, blend;
|
|
blend = modf(size, taps);
|
|
float ao = 0.0;
|
|
for (float i = 1.0; i <= taps; i++) {
|
|
vec3 ofs = (position + normal * (i * 0.5 + 1.0)) * cell_size;
|
|
ao += textureLod(sampler3D(gi_probe_textures[gi_probes.data[index].texture_slot], material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ofs, i - 1.0).a * i;
|
|
}
|
|
|
|
if (blend > 0.001) {
|
|
vec3 ofs = (position + normal * ((taps + 1.0) * 0.5 + 1.0)) * cell_size;
|
|
ao += textureLod(sampler3D(gi_probe_textures[gi_probes.data[index].texture_slot], material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ofs, taps).a * (taps + 1.0) * blend;
|
|
}
|
|
|
|
ao = 1.0 - min(1.0, ao);
|
|
|
|
light = mix(scene_data.ao_color.rgb, light, mix(1.0, ao, gi_probes.data[index].ambient_occlusion));
|
|
}
|
|
|
|
out_diff += vec4(light * blend, blend);
|
|
|
|
//irradiance
|
|
#ifndef GI_PROBE_LOW_QUALITY
|
|
vec4 irr_light = voxel_cone_trace(gi_probe_textures[gi_probes.data[index].texture_slot], cell_size, position, ref_vec, tan(roughness * 0.5 * M_PI * 0.99), max_distance, gi_probes.data[index].bias);
|
|
if (gi_probes.data[index].blend_ambient) {
|
|
irr_light.rgb = mix(environment, irr_light.rgb, min(1.0, irr_light.a / 0.95));
|
|
}
|
|
irr_light.rgb *= gi_probes.data[index].dynamic_range;
|
|
//irr_light=vec3(0.0);
|
|
|
|
out_spec += vec4(irr_light.rgb * blend, blend);
|
|
#endif
|
|
}
|
|
|
|
#endif //USE_VOXEL_CONE_TRACING
|
|
|
|
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
|
|
|
|
void main() {
|
|
|
|
#ifdef MODE_DUAL_PARABOLOID
|
|
|
|
if (dp_clip > 0.0)
|
|
discard;
|
|
#endif
|
|
|
|
//lay out everything, whathever is unused is optimized away anyway
|
|
vec3 vertex = vertex_interp;
|
|
vec3 view = -normalize(vertex_interp);
|
|
vec3 albedo = vec3(1.0);
|
|
vec3 transmission = vec3(0.0);
|
|
float metallic = 0.0;
|
|
float specular = 0.5;
|
|
vec3 emission = vec3(0.0);
|
|
float roughness = 1.0;
|
|
float rim = 0.0;
|
|
float rim_tint = 0.0;
|
|
float clearcoat = 0.0;
|
|
float clearcoat_gloss = 0.0;
|
|
float anisotropy = 0.0;
|
|
vec2 anisotropy_flow = vec2(1.0, 0.0);
|
|
|
|
#if defined(AO_USED)
|
|
float ao = 1.0;
|
|
float ao_light_affect = 0.0;
|
|
#endif
|
|
|
|
float alpha = 1.0;
|
|
|
|
#if defined(ALPHA_SCISSOR_USED)
|
|
float alpha_scissor = 0.5;
|
|
#endif
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
vec3 binormal = normalize(binormal_interp);
|
|
vec3 tangent = normalize(tangent_interp);
|
|
#else
|
|
vec3 binormal = vec3(0.0);
|
|
vec3 tangent = vec3(0.0);
|
|
#endif
|
|
vec3 normal = normalize(normal_interp);
|
|
|
|
#if defined(DO_SIDE_CHECK)
|
|
if (!gl_FrontFacing) {
|
|
normal = -normal;
|
|
}
|
|
#endif
|
|
|
|
#if defined(UV_USED)
|
|
vec2 uv = uv_interp;
|
|
#endif
|
|
|
|
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
|
|
vec2 uv2 = uv2_interp;
|
|
#endif
|
|
|
|
#if defined(COLOR_USED)
|
|
vec4 color = color_interp;
|
|
#endif
|
|
|
|
#if defined(NORMALMAP_USED)
|
|
|
|
vec3 normalmap = vec3(0.5);
|
|
#endif
|
|
|
|
float normaldepth = 1.0;
|
|
|
|
vec2 screen_uv = gl_FragCoord.xy * scene_data.screen_pixel_size + scene_data.screen_pixel_size * 0.5; //account for center
|
|
|
|
float sss_strength = 0.0;
|
|
|
|
{
|
|
/* clang-format off */
|
|
|
|
FRAGMENT_SHADER_CODE
|
|
|
|
/* clang-format on */
|
|
}
|
|
|
|
#if !defined(USE_SHADOW_TO_OPACITY)
|
|
|
|
#if defined(ALPHA_SCISSOR_USED)
|
|
if (alpha < alpha_scissor) {
|
|
discard;
|
|
}
|
|
#endif // ALPHA_SCISSOR_USED
|
|
|
|
#ifdef USE_OPAQUE_PREPASS
|
|
|
|
if (alpha < opaque_prepass_threshold) {
|
|
discard;
|
|
}
|
|
|
|
#endif // USE_OPAQUE_PREPASS
|
|
|
|
#endif // !USE_SHADOW_TO_OPACITY
|
|
|
|
#if defined(NORMALMAP_USED)
|
|
|
|
normalmap.xy = normalmap.xy * 2.0 - 1.0;
|
|
normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.
|
|
|
|
normal = normalize(mix(normal, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth));
|
|
|
|
#endif
|
|
|
|
#if defined(LIGHT_ANISOTROPY_USED)
|
|
|
|
if (anisotropy > 0.01) {
|
|
//rotation matrix
|
|
mat3 rot = mat3(tangent, binormal, normal);
|
|
//make local to space
|
|
tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0));
|
|
binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0));
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef ENABLE_CLIP_ALPHA
|
|
if (albedo.a < 0.99) {
|
|
//used for doublepass and shadowmapping
|
|
discard;
|
|
}
|
|
#endif
|
|
|
|
/////////////////////// LIGHTING //////////////////////////////
|
|
|
|
//apply energy conservation
|
|
|
|
vec3 specular_light = vec3(0.0, 0.0, 0.0);
|
|
vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
|
|
vec3 ambient_light = vec3(0.0, 0.0, 0.0);
|
|
|
|
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
|
|
|
|
if (scene_data.roughness_limiter_enabled) {
|
|
float limit = texelFetch(sampler2D(roughness_buffer, material_samplers[SAMPLER_NEAREST_CLAMP]), ivec2(gl_FragCoord.xy), 0).r;
|
|
roughness = max(roughness, limit);
|
|
}
|
|
|
|
if (scene_data.use_reflection_cubemap) {
|
|
|
|
vec3 ref_vec = reflect(-view, normal);
|
|
ref_vec = scene_data.radiance_inverse_xform * ref_vec;
|
|
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
|
|
|
|
float lod, blend;
|
|
blend = modf(roughness * MAX_ROUGHNESS_LOD, lod);
|
|
specular_light = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod)).rgb;
|
|
specular_light = mix(specular_light, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod + 1)).rgb, blend);
|
|
|
|
#else
|
|
specular_light = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ref_vec, roughness * MAX_ROUGHNESS_LOD).rgb;
|
|
|
|
#endif //USE_RADIANCE_CUBEMAP_ARRAY
|
|
specular_light *= scene_data.ambient_light_color_energy.a;
|
|
}
|
|
|
|
#ifndef USE_LIGHTMAP
|
|
//lightmap overrides everything
|
|
if (scene_data.use_ambient_light) {
|
|
|
|
ambient_light = scene_data.ambient_light_color_energy.rgb;
|
|
|
|
if (scene_data.use_ambient_cubemap) {
|
|
vec3 ambient_dir = scene_data.radiance_inverse_xform * normal;
|
|
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
|
|
vec3 cubemap_ambient = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ambient_dir, MAX_ROUGHNESS_LOD)).rgb;
|
|
#else
|
|
vec3 cubemap_ambient = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ambient_dir, MAX_ROUGHNESS_LOD).rgb;
|
|
#endif //USE_RADIANCE_CUBEMAP_ARRAY
|
|
|
|
ambient_light = mix(ambient_light, cubemap_ambient * scene_data.ambient_light_color_energy.a, scene_data.ambient_color_sky_mix);
|
|
}
|
|
}
|
|
#endif // USE_LIGHTMAP
|
|
|
|
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
|
|
|
|
//radiance
|
|
|
|
float specular_blob_intensity = 1.0;
|
|
|
|
#if defined(SPECULAR_TOON)
|
|
specular_blob_intensity *= specular * 2.0;
|
|
#endif
|
|
|
|
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
|
|
//gi probes
|
|
|
|
//lightmap
|
|
|
|
//lightmap capture
|
|
|
|
#ifdef USE_VOXEL_CONE_TRACING
|
|
{ // process giprobes
|
|
uint index1 = instances.data[instance_index].gi_offset & 0xFFFF;
|
|
if (index1 != 0xFFFF) {
|
|
vec3 ref_vec = normalize(reflect(normalize(vertex), normal));
|
|
//find arbitrary tangent and bitangent, then build a matrix
|
|
vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
|
|
vec3 tangent = normalize(cross(v0, normal));
|
|
vec3 bitangent = normalize(cross(tangent, normal));
|
|
mat3 normal_mat = mat3(tangent, bitangent, normal);
|
|
|
|
vec4 amb_accum = vec4(0.0);
|
|
vec4 spec_accum = vec4(0.0);
|
|
gi_probe_compute(index1, vertex, normal, ref_vec, normal_mat, roughness * roughness, ambient_light, specular_light, spec_accum, amb_accum);
|
|
|
|
uint index2 = instances.data[instance_index].gi_offset >> 16;
|
|
|
|
if (index2 != 0xFFFF) {
|
|
gi_probe_compute(index2, vertex, normal, ref_vec, normal_mat, roughness * roughness, ambient_light, specular_light, spec_accum, amb_accum);
|
|
}
|
|
|
|
if (amb_accum.a > 0.0) {
|
|
amb_accum.rgb /= amb_accum.a;
|
|
}
|
|
|
|
if (spec_accum.a > 0.0) {
|
|
spec_accum.rgb /= spec_accum.a;
|
|
}
|
|
|
|
specular_light = spec_accum.rgb;
|
|
ambient_light = amb_accum.rgb;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
uvec4 cluster_cell = texture(usampler3D(cluster_texture, material_samplers[SAMPLER_NEAREST_CLAMP]), vec3(screen_uv, (abs(vertex.z) - scene_data.z_near) / (scene_data.z_far - scene_data.z_near)));
|
|
|
|
{ // process reflections
|
|
|
|
vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0);
|
|
vec4 ambient_accum = vec4(0.0, 0.0, 0.0, 0.0);
|
|
|
|
uint reflection_probe_count = cluster_cell.z >> CLUSTER_COUNTER_SHIFT;
|
|
uint reflection_probe_pointer = cluster_cell.z & CLUSTER_POINTER_MASK;
|
|
|
|
for (uint i = 0; i < reflection_probe_count; i++) {
|
|
|
|
uint ref_index = cluster_data.indices[reflection_probe_pointer + i];
|
|
reflection_process(ref_index, vertex, normal, roughness, ambient_light, specular_light, ambient_accum, reflection_accum);
|
|
}
|
|
|
|
if (reflection_accum.a > 0.0) {
|
|
specular_light = reflection_accum.rgb / reflection_accum.a;
|
|
}
|
|
|
|
#if !defined(USE_LIGHTMAP)
|
|
if (ambient_accum.a > 0.0) {
|
|
ambient_light = ambient_accum.rgb / ambient_accum.a;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
{
|
|
|
|
#if defined(DIFFUSE_TOON)
|
|
//simplify for toon, as
|
|
specular_light *= specular * metallic * albedo * 2.0;
|
|
#else
|
|
|
|
// scales the specular reflections, needs to be be computed before lighting happens,
|
|
// but after environment, GI, and reflection probes are added
|
|
// Environment brdf approximation (Lazarov 2013)
|
|
// see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
|
|
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
|
|
const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
|
|
vec4 r = roughness * c0 + c1;
|
|
float ndotv = clamp(dot(normal, view), 0.0, 1.0);
|
|
float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
|
|
vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
|
|
|
|
vec3 f0 = F0(metallic, specular, albedo);
|
|
specular_light *= env.x * f0 + env.y;
|
|
#endif
|
|
}
|
|
|
|
{ //directional light
|
|
|
|
for (uint i = 0; i < scene_data.directional_light_count; i++) {
|
|
|
|
if (!bool(directional_lights.data[i].mask & instances.data[instance_index].layer_mask)) {
|
|
continue; //not masked
|
|
}
|
|
|
|
vec3 light_attenuation = vec3(1.0);
|
|
|
|
if (directional_lights.data[i].shadow_enabled) {
|
|
float depth_z = -vertex.z;
|
|
|
|
vec4 pssm_coord;
|
|
|
|
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix1 * vec4(vertex, 1.0));
|
|
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix2 * vec4(vertex, 1.0));
|
|
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix3 * vec4(vertex, 1.0));
|
|
} else {
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix4 * vec4(vertex, 1.0));
|
|
}
|
|
|
|
pssm_coord /= pssm_coord.w;
|
|
|
|
float shadow = sample_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size, pssm_coord);
|
|
|
|
if (directional_lights.data[i].blend_splits) {
|
|
|
|
float pssm_blend;
|
|
|
|
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix2 * vec4(vertex, 1.0));
|
|
pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z);
|
|
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix3 * vec4(vertex, 1.0));
|
|
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z);
|
|
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix4 * vec4(vertex, 1.0));
|
|
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z);
|
|
} else {
|
|
pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached)
|
|
}
|
|
|
|
pssm_coord /= pssm_coord.w;
|
|
|
|
float shadow2 = sample_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size, pssm_coord);
|
|
shadow = mix(shadow, shadow2, pssm_blend);
|
|
}
|
|
|
|
shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance
|
|
|
|
light_attenuation = mix(directional_lights.data[i].shadow_color, vec3(1.0), shadow);
|
|
}
|
|
|
|
light_compute(normal, directional_lights.data[i].direction, normalize(view), directional_lights.data[i].color * directional_lights.data[i].energy, light_attenuation, albedo, roughness, metallic, specular, directional_lights.data[i].specular * specular_blob_intensity,
|
|
#ifdef LIGHT_TRANSMISSION_USED
|
|
transmission,
|
|
#endif
|
|
#ifdef LIGHT_RIM_USED
|
|
rim, rim_tint,
|
|
#endif
|
|
#ifdef LIGHT_CLEARCOAT_USED
|
|
clearcoat, clearcoat_gloss,
|
|
#endif
|
|
#ifdef LIGHT_ANISOTROPY_USED
|
|
binormal, tangent, anisotropy,
|
|
#endif
|
|
#ifdef USE_SHADOW_TO_OPACITY
|
|
alpha,
|
|
#endif
|
|
diffuse_light,
|
|
specular_light);
|
|
}
|
|
}
|
|
|
|
{ //omni lights
|
|
|
|
uint omni_light_count = cluster_cell.x >> CLUSTER_COUNTER_SHIFT;
|
|
uint omni_light_pointer = cluster_cell.x & CLUSTER_POINTER_MASK;
|
|
|
|
for (uint i = 0; i < omni_light_count; i++) {
|
|
|
|
uint light_index = cluster_data.indices[omni_light_pointer + i];
|
|
|
|
if (!bool(lights.data[light_index].mask & instances.data[instance_index].layer_mask)) {
|
|
continue; //not masked
|
|
}
|
|
|
|
light_process_omni(light_index, vertex, view, normal, albedo, roughness, metallic, specular, specular_blob_intensity,
|
|
#ifdef LIGHT_TRANSMISSION_USED
|
|
transmission,
|
|
#endif
|
|
#ifdef LIGHT_RIM_USED
|
|
rim,
|
|
rim_tint,
|
|
#endif
|
|
#ifdef LIGHT_CLEARCOAT_USED
|
|
clearcoat, clearcoat_gloss,
|
|
#endif
|
|
#ifdef LIGHT_ANISOTROPY_USED
|
|
tangent, binormal, anisotropy,
|
|
#endif
|
|
#ifdef USE_SHADOW_TO_OPACITY
|
|
alpha,
|
|
#endif
|
|
diffuse_light, specular_light);
|
|
}
|
|
}
|
|
|
|
{ //spot lights
|
|
uint spot_light_count = cluster_cell.y >> CLUSTER_COUNTER_SHIFT;
|
|
uint spot_light_pointer = cluster_cell.y & CLUSTER_POINTER_MASK;
|
|
|
|
for (uint i = 0; i < spot_light_count; i++) {
|
|
|
|
uint light_index = cluster_data.indices[spot_light_pointer + i];
|
|
|
|
if (!bool(lights.data[light_index].mask & instances.data[instance_index].layer_mask)) {
|
|
continue; //not masked
|
|
}
|
|
|
|
light_process_spot(light_index, vertex, view, normal, albedo, roughness, metallic, specular, specular_blob_intensity,
|
|
#ifdef LIGHT_TRANSMISSION_USED
|
|
transmission,
|
|
#endif
|
|
#ifdef LIGHT_RIM_USED
|
|
rim,
|
|
rim_tint,
|
|
#endif
|
|
#ifdef LIGHT_CLEARCOAT_USED
|
|
clearcoat, clearcoat_gloss,
|
|
#endif
|
|
#ifdef LIGHT_ANISOTROPY_USED
|
|
tangent, binormal, anisotropy,
|
|
#endif
|
|
#ifdef USE_SHADOW_TO_OPACITY
|
|
alpha,
|
|
#endif
|
|
diffuse_light, specular_light);
|
|
}
|
|
}
|
|
|
|
#ifdef USE_SHADOW_TO_OPACITY
|
|
alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0));
|
|
|
|
#if defined(ALPHA_SCISSOR_USED)
|
|
if (alpha < alpha_scissor) {
|
|
discard;
|
|
}
|
|
#endif // ALPHA_SCISSOR_USED
|
|
|
|
#ifdef USE_OPAQUE_PREPASS
|
|
|
|
if (alpha < opaque_prepass_threshold) {
|
|
discard;
|
|
}
|
|
|
|
#endif // USE_OPAQUE_PREPASS
|
|
|
|
#endif // USE_SHADOW_TO_OPACITY
|
|
|
|
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
|
|
|
|
#ifdef MODE_RENDER_DEPTH
|
|
|
|
#ifdef MODE_RENDER_MATERIAL
|
|
|
|
albedo_output_buffer.rgb = albedo;
|
|
albedo_output_buffer.a = alpha;
|
|
|
|
normal_output_buffer.rgb = normal * 0.5 + 0.5;
|
|
normal_output_buffer.a = 0.0;
|
|
depth_output_buffer.r = -vertex.z;
|
|
|
|
#if defined(AO_USED)
|
|
orm_output_buffer.r = ao;
|
|
#else
|
|
orm_output_buffer.r = 0.0;
|
|
#endif
|
|
orm_output_buffer.g = roughness;
|
|
orm_output_buffer.b = metallic;
|
|
orm_output_buffer.a = sss_strength;
|
|
|
|
emission_output_buffer.rgb = emission;
|
|
emission_output_buffer.a = 0.0;
|
|
#endif
|
|
|
|
#ifdef MODE_RENDER_NORMAL
|
|
normal_output_buffer = vec4(normal * 0.5 + 0.5, 0.0);
|
|
#ifdef MODE_RENDER_ROUGHNESS
|
|
roughness_output_buffer = roughness;
|
|
#endif //MODE_RENDER_ROUGHNESS
|
|
#endif //MODE_RENDER_NORMAL
|
|
|
|
//nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
|
|
#else
|
|
|
|
specular_light *= scene_data.reflection_multiplier;
|
|
ambient_light *= albedo; //ambient must be multiplied by albedo at the end
|
|
|
|
//ambient occlusion
|
|
#if defined(AO_USED)
|
|
|
|
if (scene_data.ssao_enabled && scene_data.ssao_ao_affect > 0.0) {
|
|
float ssao = texture(sampler2D(ao_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), screen_uv).r;
|
|
ao = mix(ao, min(ao, ssao), scene_data.ssao_ao_affect);
|
|
ao_light_affect = mix(ao_light_affect, max(ao_light_affect, scene_data.ssao_light_affect), scene_data.ssao_ao_affect);
|
|
}
|
|
|
|
ambient_light = mix(scene_data.ao_color.rgb, ambient_light, ao);
|
|
ao_light_affect = mix(1.0, ao, ao_light_affect);
|
|
specular_light = mix(scene_data.ao_color.rgb, specular_light, ao_light_affect);
|
|
diffuse_light = mix(scene_data.ao_color.rgb, diffuse_light, ao_light_affect);
|
|
|
|
#else
|
|
|
|
if (scene_data.ssao_enabled) {
|
|
float ao = texture(sampler2D(ao_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), screen_uv).r;
|
|
ambient_light = mix(scene_data.ao_color.rgb, ambient_light, ao);
|
|
float ao_light_affect = mix(1.0, ao, scene_data.ssao_light_affect);
|
|
specular_light = mix(scene_data.ao_color.rgb, specular_light, ao_light_affect);
|
|
diffuse_light = mix(scene_data.ao_color.rgb, diffuse_light, ao_light_affect);
|
|
}
|
|
|
|
#endif // AO_USED
|
|
|
|
// base color remapping
|
|
diffuse_light *= 1.0 - metallic; // TODO: avoid all diffuse and ambient light calculations when metallic == 1 up to this point
|
|
ambient_light *= 1.0 - metallic;
|
|
|
|
//fog
|
|
|
|
#ifdef MODE_MULTIPLE_RENDER_TARGETS
|
|
|
|
#ifdef MODE_UNSHADED
|
|
diffuse_buffer = vec4(albedo.rgb, 0.0);
|
|
specular_buffer = vec4(0.0);
|
|
|
|
#else
|
|
|
|
diffuse_buffer = vec4(emission + diffuse_light + ambient_light, sss_strength);
|
|
specular_buffer = vec4(specular_light, metallic);
|
|
|
|
#endif
|
|
|
|
#else //MODE_MULTIPLE_RENDER_TARGETS
|
|
|
|
#ifdef MODE_UNSHADED
|
|
frag_color = vec4(albedo, alpha);
|
|
#else
|
|
frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha);
|
|
//frag_color = vec4(1.0);
|
|
|
|
#endif //USE_NO_SHADING
|
|
|
|
#endif //MODE_MULTIPLE_RENDER_TARGETS
|
|
|
|
#endif //MODE_RENDER_DEPTH
|
|
}
|