393 lines
9.1 KiB
C++
393 lines
9.1 KiB
C++
/*************************************************************************/
|
|
/* vector3.h */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* http://www.godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2016 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
#ifndef VECTOR3_H
|
|
#define VECTOR3_H
|
|
|
|
#include "typedefs.h"
|
|
#include "math_defs.h"
|
|
#include "math_funcs.h"
|
|
#include "ustring.h"
|
|
|
|
|
|
struct Vector3 {
|
|
|
|
enum Axis {
|
|
AXIS_X,
|
|
AXIS_Y,
|
|
AXIS_Z,
|
|
};
|
|
|
|
union {
|
|
struct {
|
|
real_t x;
|
|
real_t y;
|
|
real_t z;
|
|
};
|
|
|
|
real_t coord[3];
|
|
};
|
|
|
|
_FORCE_INLINE_ const real_t& operator[](int p_axis) const {
|
|
|
|
return coord[p_axis];
|
|
}
|
|
|
|
_FORCE_INLINE_ real_t& operator[](int p_axis) {
|
|
|
|
return coord[p_axis];
|
|
}
|
|
|
|
void set_axis(int p_axis,real_t p_value);
|
|
real_t get_axis(int p_axis) const;
|
|
|
|
int min_axis() const;
|
|
int max_axis() const;
|
|
|
|
_FORCE_INLINE_ real_t length() const;
|
|
_FORCE_INLINE_ real_t length_squared() const;
|
|
|
|
_FORCE_INLINE_ void normalize();
|
|
_FORCE_INLINE_ Vector3 normalized() const;
|
|
_FORCE_INLINE_ Vector3 inverse() const;
|
|
|
|
_FORCE_INLINE_ void zero();
|
|
|
|
void snap(float p_val);
|
|
Vector3 snapped(float p_val) const;
|
|
|
|
void rotate(const Vector3& p_axis,float p_phi);
|
|
Vector3 rotated(const Vector3& p_axis,float p_phi) const;
|
|
|
|
/* Static Methods between 2 vector3s */
|
|
|
|
_FORCE_INLINE_ Vector3 linear_interpolate(const Vector3& p_b,float p_t) const;
|
|
Vector3 cubic_interpolate(const Vector3& p_b,const Vector3& p_pre_a, const Vector3& p_post_b,float p_t) const;
|
|
Vector3 cubic_interpolaten(const Vector3& p_b,const Vector3& p_pre_a, const Vector3& p_post_b,float p_t) const;
|
|
|
|
_FORCE_INLINE_ Vector3 cross(const Vector3& p_b) const;
|
|
_FORCE_INLINE_ real_t dot(const Vector3& p_b) const;
|
|
|
|
_FORCE_INLINE_ Vector3 abs() const;
|
|
_FORCE_INLINE_ Vector3 floor() const;
|
|
_FORCE_INLINE_ Vector3 ceil() const;
|
|
|
|
_FORCE_INLINE_ real_t distance_to(const Vector3& p_b) const;
|
|
_FORCE_INLINE_ real_t distance_squared_to(const Vector3& p_b) const;
|
|
|
|
_FORCE_INLINE_ real_t angle_to(const Vector3& p_b) const;
|
|
|
|
|
|
_FORCE_INLINE_ Vector3 slide(const Vector3& p_vec) const;
|
|
_FORCE_INLINE_ Vector3 reflect(const Vector3& p_vec) const;
|
|
|
|
|
|
/* Operators */
|
|
|
|
_FORCE_INLINE_ Vector3& operator+=(const Vector3& p_v);
|
|
_FORCE_INLINE_ Vector3 operator+(const Vector3& p_v) const;
|
|
_FORCE_INLINE_ Vector3& operator-=(const Vector3& p_v);
|
|
_FORCE_INLINE_ Vector3 operator-(const Vector3& p_v) const;
|
|
_FORCE_INLINE_ Vector3& operator*=(const Vector3& p_v);
|
|
_FORCE_INLINE_ Vector3 operator*(const Vector3& p_v) const;
|
|
_FORCE_INLINE_ Vector3& operator/=(const Vector3& p_v);
|
|
_FORCE_INLINE_ Vector3 operator/(const Vector3& p_v) const;
|
|
|
|
|
|
_FORCE_INLINE_ Vector3& operator*=(real_t p_scalar);
|
|
_FORCE_INLINE_ Vector3 operator*(real_t p_scalar) const;
|
|
_FORCE_INLINE_ Vector3& operator/=(real_t p_scalar);
|
|
_FORCE_INLINE_ Vector3 operator/(real_t p_scalar) const;
|
|
|
|
_FORCE_INLINE_ Vector3 operator-() const;
|
|
|
|
_FORCE_INLINE_ bool operator==(const Vector3& p_v) const;
|
|
_FORCE_INLINE_ bool operator!=(const Vector3& p_v) const;
|
|
_FORCE_INLINE_ bool operator<(const Vector3& p_v) const;
|
|
_FORCE_INLINE_ bool operator<=(const Vector3& p_v) const;
|
|
|
|
operator String() const;
|
|
|
|
_FORCE_INLINE_ Vector3() { x=y=z=0; }
|
|
_FORCE_INLINE_ Vector3(real_t p_x,real_t p_y,real_t p_z) { x=p_x; y=p_y; z=p_z; }
|
|
|
|
};
|
|
|
|
#ifdef VECTOR3_IMPL_OVERRIDE
|
|
|
|
#include "vector3_inline.h"
|
|
|
|
#else
|
|
|
|
Vector3 Vector3::cross(const Vector3& p_b) const {
|
|
|
|
Vector3 ret (
|
|
(y * p_b.z) - (z * p_b.y),
|
|
(z * p_b.x) - (x * p_b.z),
|
|
(x * p_b.y) - (y * p_b.x)
|
|
);
|
|
|
|
return ret;
|
|
}
|
|
|
|
real_t Vector3::dot(const Vector3& p_b) const {
|
|
|
|
return x*p_b.x + y*p_b.y + z*p_b.z;
|
|
}
|
|
|
|
Vector3 Vector3::abs() const {
|
|
|
|
return Vector3( Math::abs(x), Math::abs(y), Math::abs(z) );
|
|
}
|
|
|
|
Vector3 Vector3::floor() const {
|
|
|
|
return Vector3( Math::floor(x), Math::floor(y), Math::floor(z) );
|
|
}
|
|
|
|
Vector3 Vector3::ceil() const {
|
|
|
|
return Vector3( Math::ceil(x), Math::ceil(y), Math::ceil(z) );
|
|
}
|
|
|
|
Vector3 Vector3::linear_interpolate(const Vector3& p_b,float p_t) const {
|
|
|
|
return Vector3(
|
|
x+(p_t * (p_b.x-x)),
|
|
y+(p_t * (p_b.y-y)),
|
|
z+(p_t * (p_b.z-z))
|
|
);
|
|
}
|
|
|
|
real_t Vector3::distance_to(const Vector3& p_b) const {
|
|
|
|
return (p_b-*this).length();
|
|
}
|
|
|
|
real_t Vector3::distance_squared_to(const Vector3& p_b) const {
|
|
|
|
return (p_b-*this).length_squared();
|
|
}
|
|
|
|
real_t Vector3::angle_to(const Vector3& p_b) const {
|
|
|
|
return Math::acos(this->dot(p_b) / Math::sqrt(this->length_squared() * p_b.length_squared()));
|
|
}
|
|
|
|
/* Operators */
|
|
|
|
Vector3& Vector3::operator+=(const Vector3& p_v) {
|
|
|
|
x+=p_v.x;
|
|
y+=p_v.y;
|
|
z+=p_v.z;
|
|
return *this;
|
|
}
|
|
|
|
Vector3 Vector3::operator+(const Vector3& p_v) const {
|
|
|
|
return Vector3(x+p_v.x, y+p_v.y, z+ p_v.z);
|
|
}
|
|
|
|
Vector3& Vector3::operator-=(const Vector3& p_v) {
|
|
|
|
x-=p_v.x;
|
|
y-=p_v.y;
|
|
z-=p_v.z;
|
|
return *this;
|
|
}
|
|
Vector3 Vector3::operator-(const Vector3& p_v) const {
|
|
|
|
return Vector3(x-p_v.x, y-p_v.y, z- p_v.z);
|
|
}
|
|
|
|
Vector3& Vector3::operator*=(const Vector3& p_v) {
|
|
|
|
x*=p_v.x;
|
|
y*=p_v.y;
|
|
z*=p_v.z;
|
|
return *this;
|
|
}
|
|
Vector3 Vector3::operator*(const Vector3& p_v) const {
|
|
|
|
return Vector3(x*p_v.x, y*p_v.y, z* p_v.z);
|
|
}
|
|
|
|
Vector3& Vector3::operator/=(const Vector3& p_v) {
|
|
|
|
x/=p_v.x;
|
|
y/=p_v.y;
|
|
z/=p_v.z;
|
|
return *this;
|
|
}
|
|
|
|
Vector3 Vector3::operator/(const Vector3& p_v) const {
|
|
|
|
return Vector3(x/p_v.x, y/p_v.y, z/ p_v.z);
|
|
}
|
|
|
|
Vector3& Vector3::operator*=(real_t p_scalar) {
|
|
|
|
x*=p_scalar;
|
|
y*=p_scalar;
|
|
z*=p_scalar;
|
|
return *this;
|
|
}
|
|
|
|
_FORCE_INLINE_ Vector3 operator*(real_t p_scalar, const Vector3& p_vec) {
|
|
|
|
return p_vec * p_scalar;
|
|
}
|
|
|
|
Vector3 Vector3::operator*(real_t p_scalar) const {
|
|
|
|
return Vector3( x*p_scalar, y*p_scalar, z*p_scalar);
|
|
}
|
|
|
|
Vector3& Vector3::operator/=(real_t p_scalar) {
|
|
|
|
x/=p_scalar;
|
|
y/=p_scalar;
|
|
z/=p_scalar;
|
|
return *this;
|
|
}
|
|
|
|
Vector3 Vector3::operator/(real_t p_scalar) const {
|
|
|
|
return Vector3( x/p_scalar, y/p_scalar, z/p_scalar);
|
|
}
|
|
|
|
Vector3 Vector3::operator-() const {
|
|
|
|
return Vector3( -x, -y, -z );
|
|
}
|
|
|
|
bool Vector3::operator==(const Vector3& p_v) const {
|
|
|
|
return (x==p_v.x && y==p_v.y && z==p_v.z);
|
|
}
|
|
|
|
bool Vector3::operator!=(const Vector3& p_v) const {
|
|
|
|
return (x!=p_v.x || y!=p_v.y || z!=p_v.z);
|
|
}
|
|
|
|
bool Vector3::operator<(const Vector3& p_v) const {
|
|
|
|
if (x==p_v.x) {
|
|
if (y==p_v.y)
|
|
return z<p_v.z;
|
|
else
|
|
return y<p_v.y;
|
|
} else {
|
|
return x<p_v.x;
|
|
}
|
|
}
|
|
|
|
bool Vector3::operator<=(const Vector3& p_v) const {
|
|
|
|
if (x==p_v.x) {
|
|
if (y==p_v.y)
|
|
return z<=p_v.z;
|
|
else
|
|
return y<p_v.y;
|
|
} else {
|
|
return x<p_v.x;
|
|
}
|
|
}
|
|
|
|
_FORCE_INLINE_ Vector3 vec3_cross(const Vector3& p_a, const Vector3& p_b) {
|
|
|
|
return p_a.cross(p_b);
|
|
}
|
|
|
|
_FORCE_INLINE_ real_t vec3_dot(const Vector3& p_a, const Vector3& p_b) {
|
|
|
|
return p_a.dot(p_b);
|
|
}
|
|
|
|
real_t Vector3::length() const {
|
|
|
|
real_t x2=x*x;
|
|
real_t y2=y*y;
|
|
real_t z2=z*z;
|
|
|
|
return Math::sqrt(x2+y2+z2);
|
|
}
|
|
|
|
real_t Vector3::length_squared() const {
|
|
|
|
real_t x2=x*x;
|
|
real_t y2=y*y;
|
|
real_t z2=z*z;
|
|
|
|
return x2+y2+z2;
|
|
}
|
|
|
|
void Vector3::normalize() {
|
|
|
|
real_t l=length();
|
|
if (l==0) {
|
|
x=y=z=0;
|
|
} else {
|
|
x/=l;
|
|
y/=l;
|
|
z/=l;
|
|
}
|
|
}
|
|
|
|
Vector3 Vector3::normalized() const {
|
|
|
|
Vector3 v=*this;
|
|
v.normalize();
|
|
return v;
|
|
}
|
|
|
|
Vector3 Vector3::inverse() const {
|
|
|
|
return Vector3( 1.0/x, 1.0/y, 1.0/z );
|
|
}
|
|
|
|
void Vector3::zero() {
|
|
|
|
x=y=z=0;
|
|
}
|
|
|
|
Vector3 Vector3::slide(const Vector3& p_vec) const {
|
|
|
|
return p_vec - *this * this->dot(p_vec);
|
|
}
|
|
|
|
Vector3 Vector3::reflect(const Vector3& p_vec) const {
|
|
|
|
return p_vec - *this * this->dot(p_vec) * 2.0;
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif // VECTOR3_H
|