virtualx-engine/drivers/vulkan/vulkan_context.cpp

1394 lines
51 KiB
C++

#include "vulkan_context.h"
#include "core/print_string.h"
#include "core/project_settings.h"
#include "core/version.h"
#include "vk_enum_string_helper.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
#define VULKAN_DEBUG(m_text) print_line(m_text)
#define APP_SHORT_NAME "GodotEngine"
VKAPI_ATTR VkBool32 VKAPI_CALL VulkanContext::_debug_messenger_callback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity,
VkDebugUtilsMessageTypeFlagsEXT messageType,
const VkDebugUtilsMessengerCallbackDataEXT *pCallbackData,
void *pUserData) {
char prefix[64] = "";
char *message = (char *)malloc(strlen(pCallbackData->pMessage) + 5000);
ERR_FAIL_COND_V(!message, false);
//This error needs to be ignored because the AMD allocator will mix up memory types on IGP processors
if (strstr(pCallbackData->pMessage, "Mapping an image with layout") != NULL &&
strstr(pCallbackData->pMessage, "can result in undefined behavior if this memory is used by the device") != NULL) {
return VK_FALSE;
}
if (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT) {
strcat(prefix, "VERBOSE : ");
} else if (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT) {
strcat(prefix, "INFO : ");
} else if (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT) {
strcat(prefix, "WARNING : ");
} else if (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT) {
strcat(prefix, "ERROR : ");
}
if (messageType & VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT) {
strcat(prefix, "GENERAL");
} else {
if (messageType & VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT) {
strcat(prefix, "VALIDATION");
//validation_error = 1;
}
if (messageType & VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT) {
if (messageType & VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT) {
strcat(prefix, "|");
}
strcat(prefix, "PERFORMANCE");
}
}
sprintf(message, "%s - Message Id Number: %d | Message Id Name: %s\n\t%s\n", prefix, pCallbackData->messageIdNumber,
pCallbackData->pMessageIdName, pCallbackData->pMessage);
if (pCallbackData->objectCount > 0) {
char tmp_message[500];
sprintf(tmp_message, "\n\tObjects - %d\n", pCallbackData->objectCount);
strcat(message, tmp_message);
for (uint32_t object = 0; object < pCallbackData->objectCount; ++object) {
if (NULL != pCallbackData->pObjects[object].pObjectName && strlen(pCallbackData->pObjects[object].pObjectName) > 0) {
sprintf(tmp_message, "\t\tObject[%d] - %s, Handle %p, Name \"%s\"\n", object,
string_VkObjectType(pCallbackData->pObjects[object].objectType),
(void *)(pCallbackData->pObjects[object].objectHandle), pCallbackData->pObjects[object].pObjectName);
} else {
sprintf(tmp_message, "\t\tObject[%d] - %s, Handle %p\n", object,
string_VkObjectType(pCallbackData->pObjects[object].objectType),
(void *)(pCallbackData->pObjects[object].objectHandle));
}
strcat(message, tmp_message);
}
}
if (pCallbackData->cmdBufLabelCount > 0) {
char tmp_message[500];
sprintf(tmp_message, "\n\tCommand Buffer Labels - %d\n", pCallbackData->cmdBufLabelCount);
strcat(message, tmp_message);
for (uint32_t cmd_buf_label = 0; cmd_buf_label < pCallbackData->cmdBufLabelCount; ++cmd_buf_label) {
sprintf(tmp_message, "\t\tLabel[%d] - %s { %f, %f, %f, %f}\n", cmd_buf_label,
pCallbackData->pCmdBufLabels[cmd_buf_label].pLabelName, pCallbackData->pCmdBufLabels[cmd_buf_label].color[0],
pCallbackData->pCmdBufLabels[cmd_buf_label].color[1], pCallbackData->pCmdBufLabels[cmd_buf_label].color[2],
pCallbackData->pCmdBufLabels[cmd_buf_label].color[3]);
strcat(message, tmp_message);
}
}
ERR_PRINT(message);
free(message);
// abort();
// Don't bail out, but keep going.
return false;
}
VkBool32 VulkanContext::_check_layers(uint32_t check_count, const char **check_names, uint32_t layer_count, VkLayerProperties *layers) {
for (uint32_t i = 0; i < check_count; i++) {
VkBool32 found = 0;
for (uint32_t j = 0; j < layer_count; j++) {
if (!strcmp(check_names[i], layers[j].layerName)) {
found = 1;
break;
}
}
if (!found) {
ERR_PRINT("Cant find layer: " + String(check_names[i]));
return 0;
}
}
return 1;
}
Error VulkanContext::_create_validation_layers() {
VkResult err;
uint32_t instance_layer_count = 0;
uint32_t validation_layer_count = 0;
const char *instance_validation_layers_alt1[] = { "VK_LAYER_LUNARG_standard_validation" };
const char *instance_validation_layers_alt2[] = { "VK_LAYER_GOOGLE_threading", "VK_LAYER_LUNARG_parameter_validation",
"VK_LAYER_LUNARG_object_tracker", "VK_LAYER_LUNARG_core_validation",
"VK_LAYER_GOOGLE_unique_objects" };
VkBool32 validation_found = 0;
err = vkEnumerateInstanceLayerProperties(&instance_layer_count, NULL);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
const char **instance_validation_layers = instance_validation_layers_alt1;
if (instance_layer_count > 0) {
VkLayerProperties *instance_layers = (VkLayerProperties *)malloc(sizeof(VkLayerProperties) * instance_layer_count);
err = vkEnumerateInstanceLayerProperties(&instance_layer_count, instance_layers);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
validation_found = _check_layers(ARRAY_SIZE(instance_validation_layers_alt1), instance_validation_layers,
instance_layer_count, instance_layers);
if (validation_found) {
enabled_layer_count = ARRAY_SIZE(instance_validation_layers_alt1);
enabled_layers[0] = "VK_LAYER_LUNARG_standard_validation";
validation_layer_count = 1;
} else {
// use alternative set of validation layers
instance_validation_layers = instance_validation_layers_alt2;
enabled_layer_count = ARRAY_SIZE(instance_validation_layers_alt2);
validation_found = _check_layers(ARRAY_SIZE(instance_validation_layers_alt2), instance_validation_layers,
instance_layer_count, instance_layers);
validation_layer_count = ARRAY_SIZE(instance_validation_layers_alt2);
for (uint32_t i = 0; i < validation_layer_count; i++) {
enabled_layers[i] = instance_validation_layers[i];
}
}
free(instance_layers);
}
if (!validation_found) {
return ERR_CANT_CREATE;
}
return OK;
}
Error VulkanContext::_initialize_extensions() {
VkResult err;
uint32_t instance_extension_count = 0;
enabled_extension_count = 0;
enabled_layer_count = 0;
/* Look for instance extensions */
VkBool32 surfaceExtFound = 0;
VkBool32 platformSurfaceExtFound = 0;
memset(extension_names, 0, sizeof(extension_names));
err = vkEnumerateInstanceExtensionProperties(NULL, &instance_extension_count, NULL);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
if (instance_extension_count > 0) {
VkExtensionProperties *instance_extensions = (VkExtensionProperties *)malloc(sizeof(VkExtensionProperties) * instance_extension_count);
err = vkEnumerateInstanceExtensionProperties(NULL, &instance_extension_count, instance_extensions);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
for (uint32_t i = 0; i < instance_extension_count; i++) {
if (!strcmp(VK_KHR_SURFACE_EXTENSION_NAME, instance_extensions[i].extensionName)) {
surfaceExtFound = 1;
extension_names[enabled_extension_count++] = VK_KHR_SURFACE_EXTENSION_NAME;
}
if (!strcmp(_get_platform_surface_extension(), instance_extensions[i].extensionName)) {
platformSurfaceExtFound = 1;
extension_names[enabled_extension_count++] = _get_platform_surface_extension();
}
if (!strcmp(VK_EXT_DEBUG_REPORT_EXTENSION_NAME, instance_extensions[i].extensionName)) {
if (use_validation_layers) {
extension_names[enabled_extension_count++] = VK_EXT_DEBUG_REPORT_EXTENSION_NAME;
}
}
if (!strcmp(VK_EXT_DEBUG_UTILS_EXTENSION_NAME, instance_extensions[i].extensionName)) {
if (use_validation_layers) {
extension_names[enabled_extension_count++] = VK_EXT_DEBUG_UTILS_EXTENSION_NAME;
}
}
ERR_FAIL_COND_V(enabled_extension_count >= MAX_EXTENSIONS, ERR_BUG); //??
}
free(instance_extensions);
}
ERR_FAIL_COND_V_MSG(!surfaceExtFound, ERR_CANT_CREATE, "No surface extension found, is a driver installed?");
ERR_FAIL_COND_V_MSG(!platformSurfaceExtFound, ERR_CANT_CREATE, "No platform surface extension found, is a driver installed?");
return OK;
}
Error VulkanContext::_create_physical_device() {
/* Look for validation layers */
if (use_validation_layers) {
_create_validation_layers();
}
{
Error err = _initialize_extensions();
if (err != OK) {
return err;
}
}
CharString cs = ProjectSettings::get_singleton()->get("application/config/name").operator String().utf8();
String name = "GodotEngine " + String(VERSION_FULL_NAME);
CharString namecs = name.utf8();
const VkApplicationInfo app = {
.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO,
.pNext = NULL,
.pApplicationName = cs.get_data(),
.applicationVersion = 0,
.pEngineName = namecs.get_data(),
.engineVersion = 0,
.apiVersion = VK_API_VERSION_1_0,
};
VkInstanceCreateInfo inst_info = {
.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
.pNext = NULL,
.pApplicationInfo = &app,
.enabledLayerCount = enabled_layer_count,
.ppEnabledLayerNames = (const char *const *)instance_validation_layers,
.enabledExtensionCount = enabled_extension_count,
.ppEnabledExtensionNames = (const char *const *)extension_names,
};
/*
* This is info for a temp callback to use during CreateInstance.
* After the instance is created, we use the instance-based
* function to register the final callback.
*/
VkDebugUtilsMessengerCreateInfoEXT dbg_messenger_create_info;
if (use_validation_layers) {
// VK_EXT_debug_utils style
dbg_messenger_create_info.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;
dbg_messenger_create_info.pNext = NULL;
dbg_messenger_create_info.flags = 0;
dbg_messenger_create_info.messageSeverity =
VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
dbg_messenger_create_info.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
dbg_messenger_create_info.pfnUserCallback = _debug_messenger_callback;
dbg_messenger_create_info.pUserData = this;
inst_info.pNext = &dbg_messenger_create_info;
}
uint32_t gpu_count;
VkResult err = vkCreateInstance(&inst_info, NULL, &inst);
ERR_FAIL_COND_V_MSG(err == VK_ERROR_INCOMPATIBLE_DRIVER, ERR_CANT_CREATE,
"Cannot find a compatible Vulkan installable client driver (ICD).\n\n"
"vkCreateInstance Failure");
ERR_FAIL_COND_V_MSG(err == VK_ERROR_EXTENSION_NOT_PRESENT, ERR_CANT_CREATE,
"Cannot find a specified extension library.\n"
"Make sure your layers path is set appropriately.\n"
"vkCreateInstance Failure");
ERR_FAIL_COND_V_MSG(err, ERR_CANT_CREATE,
"vkCreateInstance failed.\n\n"
"Do you have a compatible Vulkan installable client driver (ICD) installed?\n"
"Please look at the Getting Started guide for additional information.\n"
"vkCreateInstance Failure");
/* Make initial call to query gpu_count, then second call for gpu info*/
err = vkEnumeratePhysicalDevices(inst, &gpu_count, NULL);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
ERR_FAIL_COND_V_MSG(gpu_count == 0, ERR_CANT_CREATE,
"vkEnumeratePhysicalDevices reported zero accessible devices.\n\n"
"Do you have a compatible Vulkan installable client driver (ICD) installed?\n"
"vkEnumeratePhysicalDevices Failure");
VkPhysicalDevice *physical_devices = (VkPhysicalDevice *)malloc(sizeof(VkPhysicalDevice) * gpu_count);
err = vkEnumeratePhysicalDevices(inst, &gpu_count, physical_devices);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
/* for now, just grab the first physical device */
gpu = physical_devices[0];
free(physical_devices);
/* Look for device extensions */
uint32_t device_extension_count = 0;
VkBool32 swapchainExtFound = 0;
enabled_extension_count = 0;
memset(extension_names, 0, sizeof(extension_names));
err = vkEnumerateDeviceExtensionProperties(gpu, NULL, &device_extension_count, NULL);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
if (device_extension_count > 0) {
VkExtensionProperties *device_extensions = (VkExtensionProperties *)malloc(sizeof(VkExtensionProperties) * device_extension_count);
err = vkEnumerateDeviceExtensionProperties(gpu, NULL, &device_extension_count, device_extensions);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
for (uint32_t i = 0; i < device_extension_count; i++) {
if (!strcmp(VK_KHR_SWAPCHAIN_EXTENSION_NAME, device_extensions[i].extensionName)) {
swapchainExtFound = 1;
extension_names[enabled_extension_count++] = VK_KHR_SWAPCHAIN_EXTENSION_NAME;
}
ERR_FAIL_COND_V(enabled_extension_count >= MAX_EXTENSIONS, ERR_BUG);
}
if (VK_KHR_incremental_present_enabled) {
// Even though the user "enabled" the extension via the command
// line, we must make sure that it's enumerated for use with the
// device. Therefore, disable it here, and re-enable it again if
// enumerated.
VK_KHR_incremental_present_enabled = false;
for (uint32_t i = 0; i < device_extension_count; i++) {
if (!strcmp(VK_KHR_INCREMENTAL_PRESENT_EXTENSION_NAME, device_extensions[i].extensionName)) {
extension_names[enabled_extension_count++] = VK_KHR_INCREMENTAL_PRESENT_EXTENSION_NAME;
VK_KHR_incremental_present_enabled = true;
VULKAN_DEBUG("VK_KHR_incremental_present extension enabled\n");
}
ERR_FAIL_COND_V(enabled_extension_count >= MAX_EXTENSIONS, ERR_BUG);
}
if (!VK_KHR_incremental_present_enabled) {
VULKAN_DEBUG("VK_KHR_incremental_present extension NOT AVAILABLE\n");
}
}
if (VK_GOOGLE_display_timing_enabled) {
// Even though the user "enabled" the extension via the command
// line, we must make sure that it's enumerated for use with the
// device. Therefore, disable it here, and re-enable it again if
// enumerated.
VK_GOOGLE_display_timing_enabled = false;
for (uint32_t i = 0; i < device_extension_count; i++) {
if (!strcmp(VK_GOOGLE_DISPLAY_TIMING_EXTENSION_NAME, device_extensions[i].extensionName)) {
extension_names[enabled_extension_count++] = VK_GOOGLE_DISPLAY_TIMING_EXTENSION_NAME;
VK_GOOGLE_display_timing_enabled = true;
VULKAN_DEBUG("VK_GOOGLE_display_timing extension enabled\n");
}
ERR_FAIL_COND_V(enabled_extension_count >= MAX_EXTENSIONS, ERR_BUG);
}
if (!VK_GOOGLE_display_timing_enabled) {
VULKAN_DEBUG("VK_GOOGLE_display_timing extension NOT AVAILABLE\n");
}
}
free(device_extensions);
}
ERR_FAIL_COND_V_MSG(!swapchainExtFound, ERR_CANT_CREATE,
"vkEnumerateDeviceExtensionProperties failed to find the " VK_KHR_SWAPCHAIN_EXTENSION_NAME
" extension.\n\nDo you have a compatible Vulkan installable client driver (ICD) installed?\n"
"vkCreateInstance Failure");
if (use_validation_layers) {
// Setup VK_EXT_debug_utils function pointers always (we use them for
// debug labels and names).
CreateDebugUtilsMessengerEXT =
(PFN_vkCreateDebugUtilsMessengerEXT)vkGetInstanceProcAddr(inst, "vkCreateDebugUtilsMessengerEXT");
DestroyDebugUtilsMessengerEXT =
(PFN_vkDestroyDebugUtilsMessengerEXT)vkGetInstanceProcAddr(inst, "vkDestroyDebugUtilsMessengerEXT");
SubmitDebugUtilsMessageEXT =
(PFN_vkSubmitDebugUtilsMessageEXT)vkGetInstanceProcAddr(inst, "vkSubmitDebugUtilsMessageEXT");
CmdBeginDebugUtilsLabelEXT =
(PFN_vkCmdBeginDebugUtilsLabelEXT)vkGetInstanceProcAddr(inst, "vkCmdBeginDebugUtilsLabelEXT");
CmdEndDebugUtilsLabelEXT =
(PFN_vkCmdEndDebugUtilsLabelEXT)vkGetInstanceProcAddr(inst, "vkCmdEndDebugUtilsLabelEXT");
CmdInsertDebugUtilsLabelEXT =
(PFN_vkCmdInsertDebugUtilsLabelEXT)vkGetInstanceProcAddr(inst, "vkCmdInsertDebugUtilsLabelEXT");
SetDebugUtilsObjectNameEXT =
(PFN_vkSetDebugUtilsObjectNameEXT)vkGetInstanceProcAddr(inst, "vkSetDebugUtilsObjectNameEXT");
if (NULL == CreateDebugUtilsMessengerEXT || NULL == DestroyDebugUtilsMessengerEXT ||
NULL == SubmitDebugUtilsMessageEXT || NULL == CmdBeginDebugUtilsLabelEXT ||
NULL == CmdEndDebugUtilsLabelEXT || NULL == CmdInsertDebugUtilsLabelEXT ||
NULL == SetDebugUtilsObjectNameEXT) {
ERR_FAIL_V_MSG(ERR_CANT_CREATE,
"GetProcAddr: Failed to init VK_EXT_debug_utils\n"
"GetProcAddr: Failure");
}
err = CreateDebugUtilsMessengerEXT(inst, &dbg_messenger_create_info, NULL, &dbg_messenger);
switch (err) {
case VK_SUCCESS:
break;
case VK_ERROR_OUT_OF_HOST_MEMORY:
ERR_FAIL_V_MSG(ERR_CANT_CREATE,
"CreateDebugUtilsMessengerEXT: out of host memory\n"
"CreateDebugUtilsMessengerEXT Failure");
break;
default:
ERR_FAIL_V_MSG(ERR_CANT_CREATE,
"CreateDebugUtilsMessengerEXT: unknown failure\n"
"CreateDebugUtilsMessengerEXT Failure");
ERR_FAIL_V(ERR_CANT_CREATE);
break;
}
}
vkGetPhysicalDeviceProperties(gpu, &gpu_props);
/* Call with NULL data to get count */
vkGetPhysicalDeviceQueueFamilyProperties(gpu, &queue_family_count, NULL);
ERR_FAIL_COND_V(queue_family_count == 0, ERR_CANT_CREATE);
queue_props = (VkQueueFamilyProperties *)malloc(queue_family_count * sizeof(VkQueueFamilyProperties));
vkGetPhysicalDeviceQueueFamilyProperties(gpu, &queue_family_count, queue_props);
// Query fine-grained feature support for this device.
// If app has specific feature requirements it should check supported
// features based on this query
vkGetPhysicalDeviceFeatures(gpu, &physical_device_features);
#define GET_INSTANCE_PROC_ADDR(inst, entrypoint) \
{ \
fp##entrypoint = (PFN_vk##entrypoint)vkGetInstanceProcAddr(inst, "vk" #entrypoint); \
ERR_FAIL_COND_V_MSG(fp##entrypoint == NULL, ERR_CANT_CREATE, \
"vkGetInstanceProcAddr failed to find vk" #entrypoint); \
}
GET_INSTANCE_PROC_ADDR(inst, GetPhysicalDeviceSurfaceSupportKHR);
GET_INSTANCE_PROC_ADDR(inst, GetPhysicalDeviceSurfaceCapabilitiesKHR);
GET_INSTANCE_PROC_ADDR(inst, GetPhysicalDeviceSurfaceFormatsKHR);
GET_INSTANCE_PROC_ADDR(inst, GetPhysicalDeviceSurfacePresentModesKHR);
GET_INSTANCE_PROC_ADDR(inst, GetSwapchainImagesKHR);
return OK;
}
Error VulkanContext::_create_device() {
VkResult err;
float queue_priorities[1] = { 0.0 };
VkDeviceQueueCreateInfo queues[2];
queues[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queues[0].pNext = NULL;
queues[0].queueFamilyIndex = graphics_queue_family_index;
queues[0].queueCount = 1;
queues[0].pQueuePriorities = queue_priorities;
queues[0].flags = 0;
VkDeviceCreateInfo sdevice = {
.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
.pNext = NULL,
.queueCreateInfoCount = 1,
.pQueueCreateInfos = queues,
.enabledLayerCount = 0,
.ppEnabledLayerNames = NULL,
.enabledExtensionCount = enabled_extension_count,
.ppEnabledExtensionNames = (const char *const *)extension_names,
.pEnabledFeatures = &physical_device_features, // If specific features are required, pass them in here
};
if (separate_present_queue) {
queues[1].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queues[1].pNext = NULL;
queues[1].queueFamilyIndex = present_queue_family_index;
queues[1].queueCount = 1;
queues[1].pQueuePriorities = queue_priorities;
queues[1].flags = 0;
sdevice.queueCreateInfoCount = 2;
}
err = vkCreateDevice(gpu, &sdevice, NULL, &device);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
return OK;
}
Error VulkanContext::_initialize_queues(VkSurfaceKHR surface) {
// Iterate over each queue to learn whether it supports presenting:
VkBool32 *supportsPresent = (VkBool32 *)malloc(queue_family_count * sizeof(VkBool32));
for (uint32_t i = 0; i < queue_family_count; i++) {
fpGetPhysicalDeviceSurfaceSupportKHR(gpu, i, surface, &supportsPresent[i]);
}
// Search for a graphics and a present queue in the array of queue
// families, try to find one that supports both
uint32_t graphicsQueueFamilyIndex = UINT32_MAX;
uint32_t presentQueueFamilyIndex = UINT32_MAX;
for (uint32_t i = 0; i < queue_family_count; i++) {
if ((queue_props[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) != 0) {
if (graphicsQueueFamilyIndex == UINT32_MAX) {
graphicsQueueFamilyIndex = i;
}
if (supportsPresent[i] == VK_TRUE) {
graphicsQueueFamilyIndex = i;
presentQueueFamilyIndex = i;
break;
}
}
}
if (presentQueueFamilyIndex == UINT32_MAX) {
// If didn't find a queue that supports both graphics and present, then
// find a separate present queue.
for (uint32_t i = 0; i < queue_family_count; ++i) {
if (supportsPresent[i] == VK_TRUE) {
presentQueueFamilyIndex = i;
break;
}
}
}
// Generate error if could not find both a graphics and a present queue
ERR_FAIL_COND_V_MSG(graphicsQueueFamilyIndex == UINT32_MAX || presentQueueFamilyIndex == UINT32_MAX, ERR_CANT_CREATE,
"Could not find both graphics and present queues\n");
graphics_queue_family_index = graphicsQueueFamilyIndex;
present_queue_family_index = presentQueueFamilyIndex;
separate_present_queue = (graphics_queue_family_index != present_queue_family_index);
free(supportsPresent);
_create_device();
static PFN_vkGetDeviceProcAddr g_gdpa = NULL;
#define GET_DEVICE_PROC_ADDR(dev, entrypoint) \
{ \
if (!g_gdpa) g_gdpa = (PFN_vkGetDeviceProcAddr)vkGetInstanceProcAddr(inst, "vkGetDeviceProcAddr"); \
fp##entrypoint = (PFN_vk##entrypoint)g_gdpa(dev, "vk" #entrypoint); \
ERR_FAIL_COND_V_MSG(fp##entrypoint == NULL, ERR_CANT_CREATE, \
"vkGetDeviceProcAddr failed to find vk" #entrypoint); \
}
GET_DEVICE_PROC_ADDR(device, CreateSwapchainKHR);
GET_DEVICE_PROC_ADDR(device, DestroySwapchainKHR);
GET_DEVICE_PROC_ADDR(device, GetSwapchainImagesKHR);
GET_DEVICE_PROC_ADDR(device, AcquireNextImageKHR);
GET_DEVICE_PROC_ADDR(device, QueuePresentKHR);
if (VK_GOOGLE_display_timing_enabled) {
GET_DEVICE_PROC_ADDR(device, GetRefreshCycleDurationGOOGLE);
GET_DEVICE_PROC_ADDR(device, GetPastPresentationTimingGOOGLE);
}
vkGetDeviceQueue(device, graphics_queue_family_index, 0, &graphics_queue);
if (!separate_present_queue) {
present_queue = graphics_queue;
} else {
vkGetDeviceQueue(device, present_queue_family_index, 0, &present_queue);
}
// Get the list of VkFormat's that are supported:
uint32_t formatCount;
VkResult err = fpGetPhysicalDeviceSurfaceFormatsKHR(gpu, surface, &formatCount, NULL);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
VkSurfaceFormatKHR *surfFormats = (VkSurfaceFormatKHR *)malloc(formatCount * sizeof(VkSurfaceFormatKHR));
err = fpGetPhysicalDeviceSurfaceFormatsKHR(gpu, surface, &formatCount, surfFormats);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
// If the format list includes just one entry of VK_FORMAT_UNDEFINED,
// the surface has no preferred format. Otherwise, at least one
// supported format will be returned.
if (true || (formatCount == 1 && surfFormats[0].format == VK_FORMAT_UNDEFINED)) {
format = VK_FORMAT_B8G8R8A8_UNORM;
} else {
ERR_FAIL_COND_V(formatCount < 1, ERR_CANT_CREATE);
format = surfFormats[0].format;
}
color_space = surfFormats[0].colorSpace;
Error serr = _create_semaphores();
if (serr) {
return serr;
}
queues_initialized = true;
return OK;
}
Error VulkanContext::_create_semaphores() {
VkResult err;
// Create semaphores to synchronize acquiring presentable buffers before
// rendering and waiting for drawing to be complete before presenting
VkSemaphoreCreateInfo semaphoreCreateInfo = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO,
.pNext = NULL,
.flags = 0,
};
// Create fences that we can use to throttle if we get too far
// ahead of the image presents
VkFenceCreateInfo fence_ci = {
.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, .pNext = NULL, .flags = VK_FENCE_CREATE_SIGNALED_BIT
};
for (uint32_t i = 0; i < FRAME_LAG; i++) {
err = vkCreateFence(device, &fence_ci, NULL, &fences[i]);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
err = vkCreateSemaphore(device, &semaphoreCreateInfo, NULL, &image_acquired_semaphores[i]);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
err = vkCreateSemaphore(device, &semaphoreCreateInfo, NULL, &draw_complete_semaphores[i]);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
if (separate_present_queue) {
err = vkCreateSemaphore(device, &semaphoreCreateInfo, NULL, &image_ownership_semaphores[i]);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
}
}
frame_index = 0;
// Get Memory information and properties
vkGetPhysicalDeviceMemoryProperties(gpu, &memory_properties);
return OK;
}
int VulkanContext::_window_create(VkSurfaceKHR p_surface, int p_width, int p_height) {
if (!queues_initialized) {
// We use a single GPU, but we need a surface to initialize the
// queues, so this process must be deferred until a surface
// is created.
_initialize_queues(p_surface);
}
Window window;
window.surface = p_surface;
window.width = p_width;
window.height = p_height;
Error err = _update_swap_chain(&window);
ERR_FAIL_COND_V(err != OK, -1);
int id = last_window_id;
windows[id] = window;
last_window_id++;
return id;
}
void VulkanContext::window_resize(int p_window, int p_width, int p_height) {
ERR_FAIL_COND(!windows.has(p_window));
windows[p_window].width = p_width;
windows[p_window].height = p_height;
_update_swap_chain(&windows[p_window]);
}
int VulkanContext::window_get_width(int p_window) {
ERR_FAIL_COND_V(!windows.has(p_window), -1);
return windows[p_window].width;
}
int VulkanContext::window_get_height(int p_window) {
ERR_FAIL_COND_V(!windows.has(p_window), -1);
return windows[p_window].height;
}
VkRenderPass VulkanContext::window_get_render_pass(int p_window) {
ERR_FAIL_COND_V(!windows.has(p_window), VK_NULL_HANDLE);
Window *w = &windows[p_window];
//vulkan use of currentbuffer
return w->render_pass;
}
VkFramebuffer VulkanContext::window_get_framebuffer(int p_window) {
ERR_FAIL_COND_V(!windows.has(p_window), VK_NULL_HANDLE);
ERR_FAIL_COND_V(!buffers_prepared, VK_NULL_HANDLE);
Window *w = &windows[p_window];
//vulkan use of currentbuffer
return w->swapchain_image_resources[w->current_buffer].framebuffer;
}
void VulkanContext::window_destroy(int p_window_id) {
ERR_FAIL_COND(!windows.has(p_window_id));
_clean_up_swap_chain(&windows[p_window_id]);
vkDestroySurfaceKHR(inst, windows[p_window_id].surface, NULL);
windows.erase(p_window_id);
}
Error VulkanContext::_clean_up_swap_chain(Window *window) {
if (!window->swapchain) {
return OK;
}
vkDeviceWaitIdle(device);
//this destroys images associated it seems
fpDestroySwapchainKHR(device, window->swapchain, NULL);
window->swapchain = VK_NULL_HANDLE;
vkDestroyRenderPass(device, window->render_pass, NULL);
if (window->swapchain_image_resources) {
for (uint32_t i = 0; i < swapchainImageCount; i++) {
vkDestroyImageView(device, window->swapchain_image_resources[i].view, NULL);
vkDestroyFramebuffer(device, window->swapchain_image_resources[i].framebuffer, NULL);
}
free(window->swapchain_image_resources);
window->swapchain_image_resources = NULL;
}
if (separate_present_queue) {
vkDestroyCommandPool(device, window->present_cmd_pool, NULL);
}
return OK;
}
Error VulkanContext::_update_swap_chain(Window *window) {
VkResult err;
if (window->swapchain) {
_clean_up_swap_chain(window);
}
// Check the surface capabilities and formats
VkSurfaceCapabilitiesKHR surfCapabilities;
err = fpGetPhysicalDeviceSurfaceCapabilitiesKHR(gpu, window->surface, &surfCapabilities);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
uint32_t presentModeCount;
err = fpGetPhysicalDeviceSurfacePresentModesKHR(gpu, window->surface, &presentModeCount, NULL);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
VkPresentModeKHR *presentModes = (VkPresentModeKHR *)malloc(presentModeCount * sizeof(VkPresentModeKHR));
ERR_FAIL_COND_V(!presentModes, ERR_CANT_CREATE);
err = fpGetPhysicalDeviceSurfacePresentModesKHR(gpu, window->surface, &presentModeCount, presentModes);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
VkExtent2D swapchainExtent;
// width and height are either both 0xFFFFFFFF, or both not 0xFFFFFFFF.
if (surfCapabilities.currentExtent.width == 0xFFFFFFFF) {
// If the surface size is undefined, the size is set to the size
// of the images requested, which must fit within the minimum and
// maximum values.
swapchainExtent.width = window->width;
swapchainExtent.height = window->height;
if (swapchainExtent.width < surfCapabilities.minImageExtent.width) {
swapchainExtent.width = surfCapabilities.minImageExtent.width;
} else if (swapchainExtent.width > surfCapabilities.maxImageExtent.width) {
swapchainExtent.width = surfCapabilities.maxImageExtent.width;
}
if (swapchainExtent.height < surfCapabilities.minImageExtent.height) {
swapchainExtent.height = surfCapabilities.minImageExtent.height;
} else if (swapchainExtent.height > surfCapabilities.maxImageExtent.height) {
swapchainExtent.height = surfCapabilities.maxImageExtent.height;
}
} else {
// If the surface size is defined, the swap chain size must match
swapchainExtent = surfCapabilities.currentExtent;
window->width = surfCapabilities.currentExtent.width;
window->height = surfCapabilities.currentExtent.height;
}
if (window->width == 0 || window->height == 0) {
//likely window minimized, no swapchain created
return OK;
}
// The FIFO present mode is guaranteed by the spec to be supported
// and to have no tearing. It's a great default present mode to use.
VkPresentModeKHR swapchainPresentMode = VK_PRESENT_MODE_FIFO_KHR;
// There are times when you may wish to use another present mode. The
// following code shows how to select them, and the comments provide some
// reasons you may wish to use them.
//
// It should be noted that Vulkan 1.0 doesn't provide a method for
// synchronizing rendering with the presentation engine's display. There
// is a method provided for throttling rendering with the display, but
// there are some presentation engines for which this method will not work.
// If an application doesn't throttle its rendering, and if it renders much
// faster than the refresh rate of the display, this can waste power on
// mobile devices. That is because power is being spent rendering images
// that may never be seen.
// VK_PRESENT_MODE_IMMEDIATE_KHR is for applications that don't care about
// tearing, or have some way of synchronizing their rendering with the
// display.
// VK_PRESENT_MODE_MAILBOX_KHR may be useful for applications that
// generally render a new presentable image every refresh cycle, but are
// occasionally early. In this case, the application wants the new image
// to be displayed instead of the previously-queued-for-presentation image
// that has not yet been displayed.
// VK_PRESENT_MODE_FIFO_RELAXED_KHR is for applications that generally
// render a new presentable image every refresh cycle, but are occasionally
// late. In this case (perhaps because of stuttering/latency concerns),
// the application wants the late image to be immediately displayed, even
// though that may mean some tearing.
if (window->presentMode != swapchainPresentMode) {
for (size_t i = 0; i < presentModeCount; ++i) {
if (presentModes[i] == window->presentMode) {
swapchainPresentMode = window->presentMode;
break;
}
}
}
ERR_FAIL_COND_V_MSG(swapchainPresentMode != window->presentMode, ERR_CANT_CREATE, "Present mode specified is not supported\n");
// Determine the number of VkImages to use in the swap chain.
// Application desires to acquire 3 images at a time for triple
// buffering
uint32_t desiredNumOfSwapchainImages = 3;
if (desiredNumOfSwapchainImages < surfCapabilities.minImageCount) {
desiredNumOfSwapchainImages = surfCapabilities.minImageCount;
}
// If maxImageCount is 0, we can ask for as many images as we want;
// otherwise we're limited to maxImageCount
if ((surfCapabilities.maxImageCount > 0) && (desiredNumOfSwapchainImages > surfCapabilities.maxImageCount)) {
// Application must settle for fewer images than desired:
desiredNumOfSwapchainImages = surfCapabilities.maxImageCount;
}
VkSurfaceTransformFlagsKHR preTransform;
if (surfCapabilities.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR) {
preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
} else {
preTransform = surfCapabilities.currentTransform;
}
// Find a supported composite alpha mode - one of these is guaranteed to be set
VkCompositeAlphaFlagBitsKHR compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
VkCompositeAlphaFlagBitsKHR compositeAlphaFlags[4] = {
VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR,
VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR,
VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR,
VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR,
};
for (uint32_t i = 0; i < ARRAY_SIZE(compositeAlphaFlags); i++) {
if (surfCapabilities.supportedCompositeAlpha & compositeAlphaFlags[i]) {
compositeAlpha = compositeAlphaFlags[i];
break;
}
}
VkSwapchainCreateInfoKHR swapchain_ci = {
.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR,
.pNext = NULL,
.surface = window->surface,
.minImageCount = desiredNumOfSwapchainImages,
.imageFormat = format,
.imageColorSpace = color_space,
.imageExtent = {
.width = swapchainExtent.width,
.height = swapchainExtent.height,
},
.imageArrayLayers = 1,
.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0,
.pQueueFamilyIndices = NULL,
.preTransform = (VkSurfaceTransformFlagBitsKHR)preTransform,
.compositeAlpha = compositeAlpha,
.presentMode = swapchainPresentMode,
.clipped = true,
.oldSwapchain = NULL,
};
err = fpCreateSwapchainKHR(device, &swapchain_ci, NULL, &window->swapchain);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
uint32_t sp_image_count;
err = fpGetSwapchainImagesKHR(device, window->swapchain, &sp_image_count, NULL);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
if (swapchainImageCount == 0) {
//assign here for the first time.
swapchainImageCount = sp_image_count;
} else {
ERR_FAIL_COND_V(swapchainImageCount != sp_image_count, ERR_BUG);
}
VkImage *swapchainImages = (VkImage *)malloc(swapchainImageCount * sizeof(VkImage));
ERR_FAIL_COND_V(!swapchainImages, ERR_CANT_CREATE);
err = fpGetSwapchainImagesKHR(device, window->swapchain, &swapchainImageCount, swapchainImages);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
window->swapchain_image_resources =
(SwapchainImageResources *)malloc(sizeof(SwapchainImageResources) * swapchainImageCount);
ERR_FAIL_COND_V(!window->swapchain_image_resources, ERR_CANT_CREATE);
for (uint32_t i = 0; i < swapchainImageCount; i++) {
VkImageViewCreateInfo color_image_view = {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.pNext = NULL,
.flags = 0,
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.format = format,
.components = {
.r = VK_COMPONENT_SWIZZLE_R,
.g = VK_COMPONENT_SWIZZLE_G,
.b = VK_COMPONENT_SWIZZLE_B,
.a = VK_COMPONENT_SWIZZLE_A,
},
.subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1 },
};
window->swapchain_image_resources[i].image = swapchainImages[i];
color_image_view.image = window->swapchain_image_resources[i].image;
err = vkCreateImageView(device, &color_image_view, NULL, &window->swapchain_image_resources[i].view);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
}
if (NULL != presentModes) {
free(presentModes);
}
/******** FRAMEBUFFER ************/
{
const VkAttachmentDescription attachment = {
.flags = 0,
.format = format,
.samples = VK_SAMPLE_COUNT_1_BIT,
.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE,
.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
};
const VkAttachmentReference color_reference = {
.attachment = 0,
.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
};
const VkSubpassDescription subpass = {
.flags = 0,
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
.inputAttachmentCount = 0,
.pInputAttachments = NULL,
.colorAttachmentCount = 1,
.pColorAttachments = &color_reference,
.pResolveAttachments = NULL,
.pDepthStencilAttachment = NULL,
.preserveAttachmentCount = 0,
.pPreserveAttachments = NULL,
};
const VkRenderPassCreateInfo rp_info = {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
.pNext = NULL,
.flags = 0,
.attachmentCount = 1,
.pAttachments = &attachment,
.subpassCount = 1,
.pSubpasses = &subpass,
.dependencyCount = 0,
.pDependencies = NULL,
};
err = vkCreateRenderPass(device, &rp_info, NULL, &window->render_pass);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
for (uint32_t i = 0; i < swapchainImageCount; i++) {
const VkFramebufferCreateInfo fb_info = {
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.pNext = NULL,
.renderPass = window->render_pass,
.attachmentCount = 1,
.pAttachments = &window->swapchain_image_resources[i].view,
.width = (uint32_t)window->width,
.height = (uint32_t)window->height,
.layers = 1,
};
err = vkCreateFramebuffer(device, &fb_info, NULL, &window->swapchain_image_resources[i].framebuffer);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
}
}
/******** SEPARATE PRESENT QUEUE ************/
if (separate_present_queue) {
const VkCommandPoolCreateInfo present_cmd_pool_info = {
.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,
.pNext = NULL,
.flags = 0,
.queueFamilyIndex = present_queue_family_index,
};
err = vkCreateCommandPool(device, &present_cmd_pool_info, NULL, &window->present_cmd_pool);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
const VkCommandBufferAllocateInfo present_cmd_info = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
.pNext = NULL,
.commandPool = window->present_cmd_pool,
.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
.commandBufferCount = 1,
};
for (uint32_t i = 0; i < swapchainImageCount; i++) {
err = vkAllocateCommandBuffers(device, &present_cmd_info,
&window->swapchain_image_resources[i].graphics_to_present_cmd);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
const VkCommandBufferBeginInfo cmd_buf_info = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.pNext = NULL,
.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT,
.pInheritanceInfo = NULL,
};
err = vkBeginCommandBuffer(window->swapchain_image_resources[i].graphics_to_present_cmd, &cmd_buf_info);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
VkImageMemoryBarrier image_ownership_barrier = { .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = NULL,
.srcAccessMask = 0,
.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
.oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
.srcQueueFamilyIndex = graphics_queue_family_index,
.dstQueueFamilyIndex = present_queue_family_index,
.image = window->swapchain_image_resources[i].image,
.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 } };
vkCmdPipelineBarrier(window->swapchain_image_resources[i].graphics_to_present_cmd, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, 0, 0, NULL, 0, NULL, 1, &image_ownership_barrier);
err = vkEndCommandBuffer(window->swapchain_image_resources[i].graphics_to_present_cmd);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
}
}
//reset current buffer
window->current_buffer = 0;
return OK;
}
Error VulkanContext::initialize() {
Error err = _create_physical_device();
if (err) {
return err;
}
print_line("Vulkan physical device creation success o_O");
return OK;
}
void VulkanContext::set_setup_buffer(const VkCommandBuffer &pCommandBuffer) {
command_buffer_queue.write[0] = pCommandBuffer;
}
void VulkanContext::append_command_buffer(const VkCommandBuffer &pCommandBuffer) {
if (command_buffer_queue.size() <= command_buffer_count) {
command_buffer_queue.resize(command_buffer_count + 1);
}
command_buffer_queue.write[command_buffer_count] = pCommandBuffer;
command_buffer_count++;
}
void VulkanContext::flush(bool p_flush_setup, bool p_flush_pending) {
// ensure everything else pending is executed
vkDeviceWaitIdle(device);
//flush the pending setup buffer
if (p_flush_setup && command_buffer_queue[0]) {
//use a fence to wait for everything done
VkSubmitInfo submit_info;
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.pNext = NULL;
submit_info.pWaitDstStageMask = NULL;
submit_info.waitSemaphoreCount = 0;
submit_info.pWaitSemaphores = NULL;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = command_buffer_queue.ptr();
submit_info.signalSemaphoreCount = 0;
submit_info.pSignalSemaphores = NULL;
VkResult err = vkQueueSubmit(graphics_queue, 1, &submit_info, VK_NULL_HANDLE);
command_buffer_queue.write[0] = NULL;
ERR_FAIL_COND(err);
vkDeviceWaitIdle(device);
}
if (p_flush_pending && command_buffer_count > 1) {
//use a fence to wait for everything done
VkSubmitInfo submit_info;
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.pNext = NULL;
submit_info.pWaitDstStageMask = NULL;
submit_info.waitSemaphoreCount = 0;
submit_info.pWaitSemaphores = NULL;
submit_info.commandBufferCount = command_buffer_count - 1;
submit_info.pCommandBuffers = command_buffer_queue.ptr() + 1;
submit_info.signalSemaphoreCount = 0;
submit_info.pSignalSemaphores = NULL;
VkResult err = vkQueueSubmit(graphics_queue, 1, &submit_info, VK_NULL_HANDLE);
ERR_FAIL_COND(err);
vkDeviceWaitIdle(device);
command_buffer_count = 1;
}
}
Error VulkanContext::prepare_buffers() {
if (!queues_initialized) {
return OK;
}
VkResult err;
// Ensure no more than FRAME_LAG renderings are outstanding
vkWaitForFences(device, 1, &fences[frame_index], VK_TRUE, UINT64_MAX);
vkResetFences(device, 1, &fences[frame_index]);
for (Map<int, Window>::Element *E = windows.front(); E; E = E->next()) {
Window *w = &E->get();
if (w->swapchain == VK_NULL_HANDLE) {
continue;
}
do {
// Get the index of the next available swapchain image:
err =
fpAcquireNextImageKHR(device, w->swapchain, UINT64_MAX,
image_acquired_semaphores[frame_index], VK_NULL_HANDLE, &w->current_buffer);
if (err == VK_ERROR_OUT_OF_DATE_KHR) {
// swapchain is out of date (e.g. the window was resized) and
// must be recreated:
print_line("early out of data");
//resize_notify();
_update_swap_chain(w);
} else if (err == VK_SUBOPTIMAL_KHR) {
print_line("early suboptimal");
// swapchain is not as optimal as it could be, but the platform's
// presentation engine will still present the image correctly.
break;
} else {
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
}
} while (err != VK_SUCCESS);
}
buffers_prepared = true;
return OK;
}
Error VulkanContext::swap_buffers() {
if (!queues_initialized) {
return OK;
}
// print_line("swapbuffers?");
VkResult err;
#if 0
if (VK_GOOGLE_display_timing_enabled) {
// Look at what happened to previous presents, and make appropriate
// adjustments in timing:
DemoUpdateTargetIPD(demo);
// Note: a real application would position its geometry to that it's in
// the correct locatoin for when the next image is presented. It might
// also wait, so that there's less latency between any input and when
// the next image is rendered/presented. This demo program is so
// simple that it doesn't do either of those.
}
#endif
// Wait for the image acquired semaphore to be signaled to ensure
// that the image won't be rendered to until the presentation
// engine has fully released ownership to the application, and it is
// okay to render to the image.
const VkCommandBuffer *commands_ptr = NULL;
uint32_t commands_to_submit = 0;
if (command_buffer_queue[0] == NULL) {
//no setup command, but commands to submit, submit from the first and skip command
if (command_buffer_count > 1) {
commands_ptr = command_buffer_queue.ptr() + 1;
commands_to_submit = command_buffer_count - 1;
}
} else {
commands_ptr = command_buffer_queue.ptr();
commands_to_submit = command_buffer_count;
}
VkPipelineStageFlags pipe_stage_flags;
VkSubmitInfo submit_info;
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.pNext = NULL;
submit_info.pWaitDstStageMask = &pipe_stage_flags;
pipe_stage_flags = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
submit_info.waitSemaphoreCount = 1;
submit_info.pWaitSemaphores = &image_acquired_semaphores[frame_index];
submit_info.commandBufferCount = commands_to_submit;
submit_info.pCommandBuffers = commands_ptr;
submit_info.signalSemaphoreCount = 1;
submit_info.pSignalSemaphores = &draw_complete_semaphores[frame_index];
err = vkQueueSubmit(graphics_queue, 1, &submit_info, fences[frame_index]);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
command_buffer_queue.write[0] = NULL;
command_buffer_count = 1;
if (separate_present_queue) {
// If we are using separate queues, change image ownership to the
// present queue before presenting, waiting for the draw complete
// semaphore and signalling the ownership released semaphore when finished
VkFence nullFence = VK_NULL_HANDLE;
pipe_stage_flags = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
submit_info.waitSemaphoreCount = 1;
submit_info.pWaitSemaphores = &draw_complete_semaphores[frame_index];
submit_info.commandBufferCount = 0;
VkCommandBuffer *cmdbufptr = (VkCommandBuffer *)alloca(sizeof(VkCommandBuffer *) * windows.size());
submit_info.pCommandBuffers = cmdbufptr;
for (Map<int, Window>::Element *E = windows.front(); E; E = E->next()) {
Window *w = &E->get();
if (w->swapchain == VK_NULL_HANDLE) {
continue;
}
cmdbufptr[submit_info.commandBufferCount] = w->swapchain_image_resources[w->current_buffer].graphics_to_present_cmd;
submit_info.commandBufferCount++;
}
submit_info.signalSemaphoreCount = 1;
submit_info.pSignalSemaphores = &image_ownership_semaphores[frame_index];
err = vkQueueSubmit(present_queue, 1, &submit_info, nullFence);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
}
// If we are using separate queues we have to wait for image ownership,
// otherwise wait for draw complete
VkPresentInfoKHR present = {
.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
.pNext = NULL,
.waitSemaphoreCount = 1,
.pWaitSemaphores = (separate_present_queue) ? &image_ownership_semaphores[frame_index] : &draw_complete_semaphores[frame_index],
.swapchainCount = 0,
.pSwapchains = NULL,
.pImageIndices = NULL,
};
VkSwapchainKHR *pSwapchains = (VkSwapchainKHR *)alloca(sizeof(VkSwapchainKHR *) * windows.size());
uint32_t *pImageIndices = (uint32_t *)alloca(sizeof(uint32_t *) * windows.size());
present.pSwapchains = pSwapchains;
present.pImageIndices = pImageIndices;
for (Map<int, Window>::Element *E = windows.front(); E; E = E->next()) {
Window *w = &E->get();
if (w->swapchain == VK_NULL_HANDLE) {
continue;
}
pSwapchains[present.swapchainCount] = w->swapchain;
pImageIndices[present.swapchainCount] = w->current_buffer;
present.swapchainCount++;
}
#if 0
if (VK_KHR_incremental_present_enabled) {
// If using VK_KHR_incremental_present, we provide a hint of the region
// that contains changed content relative to the previously-presented
// image. The implementation can use this hint in order to save
// work/power (by only copying the region in the hint). The
// implementation is free to ignore the hint though, and so we must
// ensure that the entire image has the correctly-drawn content.
uint32_t eighthOfWidth = width / 8;
uint32_t eighthOfHeight = height / 8;
VkRectLayerKHR rect = {
.offset.x = eighthOfWidth,
.offset.y = eighthOfHeight,
.extent.width = eighthOfWidth * 6,
.extent.height = eighthOfHeight * 6,
.layer = 0,
};
VkPresentRegionKHR region = {
.rectangleCount = 1,
.pRectangles = &rect,
};
VkPresentRegionsKHR regions = {
.sType = VK_STRUCTURE_TYPE_PRESENT_REGIONS_KHR,
.pNext = present.pNext,
.swapchainCount = present.swapchainCount,
.pRegions = &region,
};
present.pNext = &regions;
}
#endif
#if 0
if (VK_GOOGLE_display_timing_enabled) {
VkPresentTimeGOOGLE ptime;
if (prev_desired_present_time == 0) {
// This must be the first present for this swapchain.
//
// We don't know where we are relative to the presentation engine's
// display's refresh cycle. We also don't know how long rendering
// takes. Let's make a grossly-simplified assumption that the
// desiredPresentTime should be half way between now and
// now+target_IPD. We will adjust over time.
uint64_t curtime = getTimeInNanoseconds();
if (curtime == 0) {
// Since we didn't find out the current time, don't give a
// desiredPresentTime:
ptime.desiredPresentTime = 0;
} else {
ptime.desiredPresentTime = curtime + (target_IPD >> 1);
}
} else {
ptime.desiredPresentTime = (prev_desired_present_time + target_IPD);
}
ptime.presentID = next_present_id++;
prev_desired_present_time = ptime.desiredPresentTime;
VkPresentTimesInfoGOOGLE present_time = {
.sType = VK_STRUCTURE_TYPE_PRESENT_TIMES_INFO_GOOGLE,
.pNext = present.pNext,
.swapchainCount = present.swapchainCount,
.pTimes = &ptime,
};
if (VK_GOOGLE_display_timing_enabled) {
present.pNext = &present_time;
}
}
#endif
static int total_frames = 0;
total_frames++;
// print_line("current buffer: " + itos(current_buffer));
err = fpQueuePresentKHR(present_queue, &present);
frame_index += 1;
frame_index %= FRAME_LAG;
if (err == VK_ERROR_OUT_OF_DATE_KHR) {
// swapchain is out of date (e.g. the window was resized) and
// must be recreated:
print_line("out of date");
resize_notify();
} else if (err == VK_SUBOPTIMAL_KHR) {
// swapchain is not as optimal as it could be, but the platform's
// presentation engine will still present the image correctly.
print_line("suboptimal");
} else {
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
}
buffers_prepared = false;
return OK;
}
void VulkanContext::resize_notify() {
}
VkDevice VulkanContext::get_device() {
return device;
}
VkPhysicalDevice VulkanContext::get_physical_device() {
return gpu;
}
int VulkanContext::get_swapchain_image_count() const {
return swapchainImageCount;
}
uint32_t VulkanContext::get_graphics_queue() const {
return graphics_queue_family_index;
}
VkFormat VulkanContext::get_screen_format() const {
return format;
}
VkPhysicalDeviceLimits VulkanContext::get_device_limits() const {
return gpu_props.limits;
}
VulkanContext::VulkanContext() {
command_buffer_count = 0;
instance_validation_layers = NULL;
use_validation_layers = true;
VK_KHR_incremental_present_enabled = true;
VK_GOOGLE_display_timing_enabled = true;
command_buffer_queue.resize(1); //first one is the setup command always
command_buffer_queue.write[0] = NULL;
command_buffer_count = 1;
queues_initialized = false;
buffers_prepared = false;
swapchainImageCount = 0;
last_window_id = 0;
}