virtualx-engine/doc/classes/Transform2D.xml
Andrii Doroshenko (Xrayez) 07cff56f48 Add transform methods for PoolVector*Array
Similarly to `Vector2` and `Rect2` transforms in 2D and Vector3, Plane,
and AABB in 3D. PoolVector2Array and PoolVector3Array were the only
missing Variant types in both Transform2D and Transform respectively.
2019-08-29 14:47:33 +03:00

184 lines
5.9 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?xml version="1.0" encoding="UTF-8" ?>
<class name="Transform2D" category="Built-In Types" version="3.2">
<brief_description>
2D transformation (3×2 matrix).
</brief_description>
<description>
Represents one or many transformations in 2D space such as translation, rotation, or scaling. It consists of two [member x] and [member y] [Vector2]s and an [member origin]. It is similar to a 3×2 matrix.
</description>
<tutorials>
</tutorials>
<methods>
<method name="Transform2D">
<return type="Transform2D">
</return>
<argument index="0" name="from" type="Transform">
</argument>
<description>
Constructs the transform from a 3D [Transform].
</description>
</method>
<method name="Transform2D">
<return type="Transform2D">
</return>
<argument index="0" name="x_axis" type="Vector2">
</argument>
<argument index="1" name="y_axis" type="Vector2">
</argument>
<argument index="2" name="origin" type="Vector2">
</argument>
<description>
Constructs the transform from 3 [Vector2]s representing x, y, and origin.
</description>
</method>
<method name="Transform2D">
<return type="Transform2D">
</return>
<argument index="0" name="rotation" type="float">
</argument>
<argument index="1" name="position" type="Vector2">
</argument>
<description>
Constructs the transform from a given angle (in radians) and position.
</description>
</method>
<method name="affine_inverse">
<return type="Transform2D">
</return>
<description>
Returns the inverse of the matrix.
</description>
</method>
<method name="basis_xform">
<return type="Vector2">
</return>
<argument index="0" name="v" type="Vector2">
</argument>
<description>
Transforms the given vector by this transform's basis (no translation).
</description>
</method>
<method name="basis_xform_inv">
<return type="Vector2">
</return>
<argument index="0" name="v" type="Vector2">
</argument>
<description>
Inverse-transforms the given vector by this transform's basis (no translation).
</description>
</method>
<method name="get_origin">
<return type="Vector2">
</return>
<description>
Returns the transform's origin (translation).
</description>
</method>
<method name="get_rotation">
<return type="float">
</return>
<description>
Returns the transform's rotation (in radians).
</description>
</method>
<method name="get_scale">
<return type="Vector2">
</return>
<description>
Returns the scale.
</description>
</method>
<method name="interpolate_with">
<return type="Transform2D">
</return>
<argument index="0" name="transform" type="Transform2D">
</argument>
<argument index="1" name="weight" type="float">
</argument>
<description>
Returns a transform interpolated between this transform and another by a given weight (0-1).
</description>
</method>
<method name="inverse">
<return type="Transform2D">
</return>
<description>
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use affine_inverse for transforms with scaling).
</description>
</method>
<method name="orthonormalized">
<return type="Transform2D">
</return>
<description>
Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors.
</description>
</method>
<method name="rotated">
<return type="Transform2D">
</return>
<argument index="0" name="phi" type="float">
</argument>
<description>
Rotates the transform by the given angle (in radians).
</description>
</method>
<method name="scaled">
<return type="Transform2D">
</return>
<argument index="0" name="scale" type="Vector2">
</argument>
<description>
Scales the transform by the given factor.
</description>
</method>
<method name="translated">
<return type="Transform2D">
</return>
<argument index="0" name="offset" type="Vector2">
</argument>
<description>
Translates the transform by the given offset.
</description>
</method>
<method name="xform">
<return type="Variant">
</return>
<argument index="0" name="v" type="Variant">
</argument>
<description>
Transforms the given [Vector2], [Rect2], or [PoolVector2Array] by this transform.
</description>
</method>
<method name="xform_inv">
<return type="Variant">
</return>
<argument index="0" name="v" type="Variant">
</argument>
<description>
Inverse-transforms the given [Vector2], [Rect2], or [PoolVector2Array] by this transform.
</description>
</method>
</methods>
<members>
<member name="origin" type="Vector2" setter="" getter="" default="Vector2( 0, 0 )">
The transform's translation offset.
</member>
<member name="x" type="Vector2" setter="" getter="" default="Vector2( 1, 0 )">
The X axis of 2×2 basis matrix containing 2 [Vector2]s as its columns: X axis and Y axis. These vectors can be interpreted as the basis vectors of local coordinate system traveling with the object.
</member>
<member name="y" type="Vector2" setter="" getter="" default="Vector2( 0, 1 )">
The Y axis of 2×2 basis matrix containing 2 [Vector2]s as its columns: X axis and Y axis. These vectors can be interpreted as the basis vectors of local coordinate system traveling with the object.
</member>
</members>
<constants>
<constant name="IDENTITY" value="Transform2D( 1, 0, 0, 1, 0, 0 )">
[Transform2D] with no translation, rotation or scaling applied. When applied to other data structures, [constant IDENTITY] performs no transformation.
</constant>
<constant name="FLIP_X" value="Transform2D( -1, 0, 0, 1, 0, 0 )">
[Transform2D] with mirroring applied parallel to the X axis.
</constant>
<constant name="FLIP_Y" value="Transform2D( 1, 0, 0, -1, 0, 0 )">
[Transform2D] with mirroring applied parallel to the Y axis.
</constant>
</constants>
</class>