virtualx-engine/scene/resources/animation.cpp
2024-09-29 17:27:36 +09:00

6454 lines
213 KiB
C++

/**************************************************************************/
/* animation.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "animation.h"
#include "animation.compat.inc"
#include "core/io/marshalls.h"
#include "core/math/geometry_3d.h"
bool Animation::_set(const StringName &p_name, const Variant &p_value) {
String prop_name = p_name;
if (p_name == SNAME("_compression")) {
ERR_FAIL_COND_V(tracks.size() > 0, false); //can only set compression if no tracks exist
Dictionary comp = p_value;
ERR_FAIL_COND_V(!comp.has("fps"), false);
ERR_FAIL_COND_V(!comp.has("bounds"), false);
ERR_FAIL_COND_V(!comp.has("pages"), false);
ERR_FAIL_COND_V(!comp.has("format_version"), false);
uint32_t format_version = comp["format_version"];
ERR_FAIL_COND_V(format_version > Compression::FORMAT_VERSION, false); // version does not match this supported version
compression.fps = comp["fps"];
Array bounds = comp["bounds"];
compression.bounds.resize(bounds.size());
for (int i = 0; i < bounds.size(); i++) {
compression.bounds[i] = bounds[i];
}
Array pages = comp["pages"];
compression.pages.resize(pages.size());
for (int i = 0; i < pages.size(); i++) {
Dictionary page = pages[i];
ERR_FAIL_COND_V(!page.has("data"), false);
ERR_FAIL_COND_V(!page.has("time_offset"), false);
compression.pages[i].data = page["data"];
compression.pages[i].time_offset = page["time_offset"];
}
compression.enabled = true;
return true;
} else if (prop_name == SNAME("markers")) {
Array markers = p_value;
for (const Dictionary marker : markers) {
ERR_FAIL_COND_V(!marker.has("name"), false);
ERR_FAIL_COND_V(!marker.has("time"), false);
StringName marker_name = marker["name"];
double time = marker["time"];
_marker_insert(time, marker_names, MarkerKey(time, marker_name));
marker_times.insert(marker_name, time);
Color color = Color(1, 1, 1);
if (marker.has("color")) {
color = marker["color"];
}
marker_colors.insert(marker_name, color);
}
return true;
} else if (prop_name.begins_with("tracks/")) {
int track = prop_name.get_slicec('/', 1).to_int();
String what = prop_name.get_slicec('/', 2);
if (tracks.size() == track && what == "type") {
String type = p_value;
if (type == "position_3d") {
add_track(TYPE_POSITION_3D);
} else if (type == "rotation_3d") {
add_track(TYPE_ROTATION_3D);
} else if (type == "scale_3d") {
add_track(TYPE_SCALE_3D);
} else if (type == "blend_shape") {
add_track(TYPE_BLEND_SHAPE);
} else if (type == "value") {
add_track(TYPE_VALUE);
} else if (type == "method") {
add_track(TYPE_METHOD);
} else if (type == "bezier") {
add_track(TYPE_BEZIER);
} else if (type == "audio") {
add_track(TYPE_AUDIO);
} else if (type == "animation") {
add_track(TYPE_ANIMATION);
} else {
return false;
}
return true;
}
ERR_FAIL_INDEX_V(track, tracks.size(), false);
if (what == "path") {
track_set_path(track, p_value);
} else if (what == "compressed_track") {
int index = p_value;
ERR_FAIL_COND_V(!compression.enabled, false);
ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)index, compression.bounds.size(), false);
Track *t = tracks[track];
t->interpolation = INTERPOLATION_LINEAR; //only linear supported
switch (t->type) {
case TYPE_POSITION_3D: {
PositionTrack *tt = static_cast<PositionTrack *>(t);
tt->compressed_track = index;
} break;
case TYPE_ROTATION_3D: {
RotationTrack *rt = static_cast<RotationTrack *>(t);
rt->compressed_track = index;
} break;
case TYPE_SCALE_3D: {
ScaleTrack *st = static_cast<ScaleTrack *>(t);
st->compressed_track = index;
} break;
case TYPE_BLEND_SHAPE: {
BlendShapeTrack *bst = static_cast<BlendShapeTrack *>(t);
bst->compressed_track = index;
} break;
default: {
return false;
}
}
return true;
} else if (what == "use_blend") {
if (track_get_type(track) == TYPE_AUDIO) {
audio_track_set_use_blend(track, p_value);
}
} else if (what == "interp") {
track_set_interpolation_type(track, InterpolationType(p_value.operator int()));
} else if (what == "loop_wrap") {
track_set_interpolation_loop_wrap(track, p_value);
} else if (what == "imported") {
track_set_imported(track, p_value);
} else if (what == "enabled") {
track_set_enabled(track, p_value);
} else if (what == "keys" || what == "key_values") {
if (track_get_type(track) == TYPE_POSITION_3D) {
PositionTrack *tt = static_cast<PositionTrack *>(tracks[track]);
Vector<real_t> values = p_value;
int vcount = values.size();
ERR_FAIL_COND_V(vcount % POSITION_TRACK_SIZE, false);
const real_t *r = values.ptr();
int64_t count = vcount / POSITION_TRACK_SIZE;
tt->positions.resize(count);
TKey<Vector3> *tw = tt->positions.ptrw();
for (int i = 0; i < count; i++) {
TKey<Vector3> &tk = tw[i];
const real_t *ofs = &r[i * POSITION_TRACK_SIZE];
tk.time = ofs[0];
tk.transition = ofs[1];
tk.value.x = ofs[2];
tk.value.y = ofs[3];
tk.value.z = ofs[4];
}
} else if (track_get_type(track) == TYPE_ROTATION_3D) {
RotationTrack *rt = static_cast<RotationTrack *>(tracks[track]);
Vector<real_t> values = p_value;
int vcount = values.size();
ERR_FAIL_COND_V(vcount % ROTATION_TRACK_SIZE, false);
const real_t *r = values.ptr();
int64_t count = vcount / ROTATION_TRACK_SIZE;
rt->rotations.resize(count);
TKey<Quaternion> *rw = rt->rotations.ptrw();
for (int i = 0; i < count; i++) {
TKey<Quaternion> &rk = rw[i];
const real_t *ofs = &r[i * ROTATION_TRACK_SIZE];
rk.time = ofs[0];
rk.transition = ofs[1];
rk.value.x = ofs[2];
rk.value.y = ofs[3];
rk.value.z = ofs[4];
rk.value.w = ofs[5];
}
} else if (track_get_type(track) == TYPE_SCALE_3D) {
ScaleTrack *st = static_cast<ScaleTrack *>(tracks[track]);
Vector<real_t> values = p_value;
int vcount = values.size();
ERR_FAIL_COND_V(vcount % SCALE_TRACK_SIZE, false);
const real_t *r = values.ptr();
int64_t count = vcount / SCALE_TRACK_SIZE;
st->scales.resize(count);
TKey<Vector3> *sw = st->scales.ptrw();
for (int i = 0; i < count; i++) {
TKey<Vector3> &sk = sw[i];
const real_t *ofs = &r[i * SCALE_TRACK_SIZE];
sk.time = ofs[0];
sk.transition = ofs[1];
sk.value.x = ofs[2];
sk.value.y = ofs[3];
sk.value.z = ofs[4];
}
} else if (track_get_type(track) == TYPE_BLEND_SHAPE) {
BlendShapeTrack *st = static_cast<BlendShapeTrack *>(tracks[track]);
Vector<real_t> values = p_value;
int vcount = values.size();
ERR_FAIL_COND_V(vcount % BLEND_SHAPE_TRACK_SIZE, false);
const real_t *r = values.ptr();
int64_t count = vcount / BLEND_SHAPE_TRACK_SIZE;
st->blend_shapes.resize(count);
TKey<float> *sw = st->blend_shapes.ptrw();
for (int i = 0; i < count; i++) {
TKey<float> &sk = sw[i];
const real_t *ofs = &r[i * BLEND_SHAPE_TRACK_SIZE];
sk.time = ofs[0];
sk.transition = ofs[1];
sk.value = ofs[2];
}
} else if (track_get_type(track) == TYPE_VALUE) {
ValueTrack *vt = static_cast<ValueTrack *>(tracks[track]);
Dictionary d = p_value;
ERR_FAIL_COND_V(!d.has("times"), false);
ERR_FAIL_COND_V(!d.has("values"), false);
if (d.has("cont")) {
bool v = d["cont"];
vt->update_mode = v ? UPDATE_CONTINUOUS : UPDATE_DISCRETE;
}
if (d.has("update")) {
int um = d["update"];
if (um < 0) {
um = 0;
} else if (um > 3) {
um = 3;
}
vt->update_mode = UpdateMode(um);
}
capture_included = capture_included || (vt->update_mode == UPDATE_CAPTURE);
Vector<real_t> times = d["times"];
Array values = d["values"];
ERR_FAIL_COND_V(times.size() != values.size(), false);
if (times.size()) {
int valcount = times.size();
const real_t *rt = times.ptr();
vt->values.resize(valcount);
for (int i = 0; i < valcount; i++) {
vt->values.write[i].time = rt[i];
vt->values.write[i].value = values[i];
}
if (d.has("transitions")) {
Vector<real_t> transitions = d["transitions"];
ERR_FAIL_COND_V(transitions.size() != valcount, false);
const real_t *rtr = transitions.ptr();
for (int i = 0; i < valcount; i++) {
vt->values.write[i].transition = rtr[i];
}
}
}
return true;
} else if (track_get_type(track) == TYPE_METHOD) {
while (track_get_key_count(track)) {
track_remove_key(track, 0); //well shouldn't be set anyway
}
Dictionary d = p_value;
ERR_FAIL_COND_V(!d.has("times"), false);
ERR_FAIL_COND_V(!d.has("values"), false);
Vector<real_t> times = d["times"];
Array values = d["values"];
ERR_FAIL_COND_V(times.size() != values.size(), false);
if (times.size()) {
int valcount = times.size();
const real_t *rt = times.ptr();
for (int i = 0; i < valcount; i++) {
track_insert_key(track, rt[i], values[i]);
}
if (d.has("transitions")) {
Vector<real_t> transitions = d["transitions"];
ERR_FAIL_COND_V(transitions.size() != valcount, false);
const real_t *rtr = transitions.ptr();
for (int i = 0; i < valcount; i++) {
track_set_key_transition(track, i, rtr[i]);
}
}
}
} else if (track_get_type(track) == TYPE_BEZIER) {
BezierTrack *bt = static_cast<BezierTrack *>(tracks[track]);
Dictionary d = p_value;
ERR_FAIL_COND_V(!d.has("times"), false);
ERR_FAIL_COND_V(!d.has("points"), false);
Vector<real_t> times = d["times"];
Vector<real_t> values = d["points"];
#ifdef TOOLS_ENABLED
Vector<int> handle_modes;
if (d.has("handle_modes")) {
handle_modes = d["handle_modes"];
} else {
handle_modes.resize_zeroed(times.size());
}
#endif // TOOLS_ENABLED
ERR_FAIL_COND_V(times.size() * 5 != values.size(), false);
if (times.size()) {
int valcount = times.size();
const real_t *rt = times.ptr();
const real_t *rv = values.ptr();
#ifdef TOOLS_ENABLED
const int *rh = handle_modes.ptr();
#endif // TOOLS_ENABLED
bt->values.resize(valcount);
for (int i = 0; i < valcount; i++) {
bt->values.write[i].time = rt[i];
bt->values.write[i].transition = 0; //unused in bezier
bt->values.write[i].value.value = rv[i * 5 + 0];
bt->values.write[i].value.in_handle.x = rv[i * 5 + 1];
bt->values.write[i].value.in_handle.y = rv[i * 5 + 2];
bt->values.write[i].value.out_handle.x = rv[i * 5 + 3];
bt->values.write[i].value.out_handle.y = rv[i * 5 + 4];
#ifdef TOOLS_ENABLED
bt->values.write[i].value.handle_mode = static_cast<HandleMode>(rh[i]);
#endif // TOOLS_ENABLED
}
}
return true;
} else if (track_get_type(track) == TYPE_AUDIO) {
AudioTrack *ad = static_cast<AudioTrack *>(tracks[track]);
Dictionary d = p_value;
ERR_FAIL_COND_V(!d.has("times"), false);
ERR_FAIL_COND_V(!d.has("clips"), false);
Vector<real_t> times = d["times"];
Array clips = d["clips"];
ERR_FAIL_COND_V(clips.size() != times.size(), false);
if (times.size()) {
int valcount = times.size();
const real_t *rt = times.ptr();
ad->values.clear();
for (int i = 0; i < valcount; i++) {
Dictionary d2 = clips[i];
if (!d2.has("start_offset")) {
continue;
}
if (!d2.has("end_offset")) {
continue;
}
if (!d2.has("stream")) {
continue;
}
TKey<AudioKey> ak;
ak.time = rt[i];
ak.value.start_offset = d2["start_offset"];
ak.value.end_offset = d2["end_offset"];
ak.value.stream = d2["stream"];
ad->values.push_back(ak);
}
}
return true;
} else if (track_get_type(track) == TYPE_ANIMATION) {
AnimationTrack *an = static_cast<AnimationTrack *>(tracks[track]);
Dictionary d = p_value;
ERR_FAIL_COND_V(!d.has("times"), false);
ERR_FAIL_COND_V(!d.has("clips"), false);
Vector<real_t> times = d["times"];
Vector<String> clips = d["clips"];
ERR_FAIL_COND_V(clips.size() != times.size(), false);
if (times.size()) {
int valcount = times.size();
const real_t *rt = times.ptr();
const String *rc = clips.ptr();
an->values.resize(valcount);
for (int i = 0; i < valcount; i++) {
TKey<StringName> ak;
ak.time = rt[i];
ak.value = rc[i];
an->values.write[i] = ak;
}
}
return true;
} else {
return false;
}
} else {
return false;
}
#ifndef DISABLE_DEPRECATED
} else if (prop_name == "loop" && p_value.operator bool()) { // Compatibility with Godot 3.x.
loop_mode = Animation::LoopMode::LOOP_LINEAR;
return true;
#endif // DISABLE_DEPRECATED
} else {
return false;
}
return true;
}
bool Animation::_get(const StringName &p_name, Variant &r_ret) const {
String prop_name = p_name;
if (p_name == SNAME("_compression")) {
ERR_FAIL_COND_V(!compression.enabled, false);
Dictionary comp;
comp["fps"] = compression.fps;
Array bounds;
bounds.resize(compression.bounds.size());
for (uint32_t i = 0; i < compression.bounds.size(); i++) {
bounds[i] = compression.bounds[i];
}
comp["bounds"] = bounds;
Array pages;
pages.resize(compression.pages.size());
for (uint32_t i = 0; i < compression.pages.size(); i++) {
Dictionary page;
page["data"] = compression.pages[i].data;
page["time_offset"] = compression.pages[i].time_offset;
pages[i] = page;
}
comp["pages"] = pages;
comp["format_version"] = Compression::FORMAT_VERSION;
r_ret = comp;
return true;
} else if (prop_name == SNAME("markers")) {
Array markers;
for (HashMap<StringName, double>::ConstIterator E = marker_times.begin(); E; ++E) {
Dictionary d;
d["name"] = E->key;
d["time"] = E->value;
d["color"] = marker_colors[E->key];
markers.push_back(d);
}
r_ret = markers;
} else if (prop_name == "length") {
r_ret = length;
} else if (prop_name == "loop_mode") {
r_ret = loop_mode;
} else if (prop_name == "step") {
r_ret = step;
} else if (prop_name.begins_with("tracks/")) {
int track = prop_name.get_slicec('/', 1).to_int();
String what = prop_name.get_slicec('/', 2);
ERR_FAIL_INDEX_V(track, tracks.size(), false);
if (what == "type") {
switch (track_get_type(track)) {
case TYPE_POSITION_3D:
r_ret = "position_3d";
break;
case TYPE_ROTATION_3D:
r_ret = "rotation_3d";
break;
case TYPE_SCALE_3D:
r_ret = "scale_3d";
break;
case TYPE_BLEND_SHAPE:
r_ret = "blend_shape";
break;
case TYPE_VALUE:
r_ret = "value";
break;
case TYPE_METHOD:
r_ret = "method";
break;
case TYPE_BEZIER:
r_ret = "bezier";
break;
case TYPE_AUDIO:
r_ret = "audio";
break;
case TYPE_ANIMATION:
r_ret = "animation";
break;
}
return true;
} else if (what == "path") {
r_ret = track_get_path(track);
} else if (what == "compressed_track") {
ERR_FAIL_COND_V(!compression.enabled, false);
Track *t = tracks[track];
switch (t->type) {
case TYPE_POSITION_3D: {
PositionTrack *tt = static_cast<PositionTrack *>(t);
r_ret = tt->compressed_track;
} break;
case TYPE_ROTATION_3D: {
RotationTrack *rt = static_cast<RotationTrack *>(t);
r_ret = rt->compressed_track;
} break;
case TYPE_SCALE_3D: {
ScaleTrack *st = static_cast<ScaleTrack *>(t);
r_ret = st->compressed_track;
} break;
case TYPE_BLEND_SHAPE: {
BlendShapeTrack *bst = static_cast<BlendShapeTrack *>(t);
r_ret = bst->compressed_track;
} break;
default: {
r_ret = Variant();
ERR_FAIL_V(false);
}
}
return true;
} else if (what == "use_blend") {
if (track_get_type(track) == TYPE_AUDIO) {
r_ret = audio_track_is_use_blend(track);
}
} else if (what == "interp") {
r_ret = track_get_interpolation_type(track);
} else if (what == "loop_wrap") {
r_ret = track_get_interpolation_loop_wrap(track);
} else if (what == "imported") {
r_ret = track_is_imported(track);
} else if (what == "enabled") {
r_ret = track_is_enabled(track);
} else if (what == "keys") {
if (track_get_type(track) == TYPE_POSITION_3D) {
Vector<real_t> keys;
int kk = track_get_key_count(track);
keys.resize(kk * POSITION_TRACK_SIZE);
real_t *w = keys.ptrw();
int idx = 0;
for (int i = 0; i < track_get_key_count(track); i++) {
Vector3 loc;
position_track_get_key(track, i, &loc);
w[idx++] = track_get_key_time(track, i);
w[idx++] = track_get_key_transition(track, i);
w[idx++] = loc.x;
w[idx++] = loc.y;
w[idx++] = loc.z;
}
r_ret = keys;
return true;
} else if (track_get_type(track) == TYPE_ROTATION_3D) {
Vector<real_t> keys;
int kk = track_get_key_count(track);
keys.resize(kk * ROTATION_TRACK_SIZE);
real_t *w = keys.ptrw();
int idx = 0;
for (int i = 0; i < track_get_key_count(track); i++) {
Quaternion rot;
rotation_track_get_key(track, i, &rot);
w[idx++] = track_get_key_time(track, i);
w[idx++] = track_get_key_transition(track, i);
w[idx++] = rot.x;
w[idx++] = rot.y;
w[idx++] = rot.z;
w[idx++] = rot.w;
}
r_ret = keys;
return true;
} else if (track_get_type(track) == TYPE_SCALE_3D) {
Vector<real_t> keys;
int kk = track_get_key_count(track);
keys.resize(kk * SCALE_TRACK_SIZE);
real_t *w = keys.ptrw();
int idx = 0;
for (int i = 0; i < track_get_key_count(track); i++) {
Vector3 scale;
scale_track_get_key(track, i, &scale);
w[idx++] = track_get_key_time(track, i);
w[idx++] = track_get_key_transition(track, i);
w[idx++] = scale.x;
w[idx++] = scale.y;
w[idx++] = scale.z;
}
r_ret = keys;
return true;
} else if (track_get_type(track) == TYPE_BLEND_SHAPE) {
Vector<real_t> keys;
int kk = track_get_key_count(track);
keys.resize(kk * BLEND_SHAPE_TRACK_SIZE);
real_t *w = keys.ptrw();
int idx = 0;
for (int i = 0; i < track_get_key_count(track); i++) {
float bs;
blend_shape_track_get_key(track, i, &bs);
w[idx++] = track_get_key_time(track, i);
w[idx++] = track_get_key_transition(track, i);
w[idx++] = bs;
}
r_ret = keys;
return true;
} else if (track_get_type(track) == TYPE_VALUE) {
const ValueTrack *vt = static_cast<const ValueTrack *>(tracks[track]);
Dictionary d;
Vector<real_t> key_times;
Vector<real_t> key_transitions;
Array key_values;
int kk = vt->values.size();
key_times.resize(kk);
key_transitions.resize(kk);
key_values.resize(kk);
real_t *wti = key_times.ptrw();
real_t *wtr = key_transitions.ptrw();
int idx = 0;
const TKey<Variant> *vls = vt->values.ptr();
for (int i = 0; i < kk; i++) {
wti[idx] = vls[i].time;
wtr[idx] = vls[i].transition;
key_values[idx] = vls[i].value;
idx++;
}
d["times"] = key_times;
d["transitions"] = key_transitions;
d["values"] = key_values;
if (track_get_type(track) == TYPE_VALUE) {
d["update"] = value_track_get_update_mode(track);
}
r_ret = d;
return true;
} else if (track_get_type(track) == TYPE_METHOD) {
Dictionary d;
Vector<real_t> key_times;
Vector<real_t> key_transitions;
Array key_values;
int kk = track_get_key_count(track);
key_times.resize(kk);
key_transitions.resize(kk);
key_values.resize(kk);
real_t *wti = key_times.ptrw();
real_t *wtr = key_transitions.ptrw();
int idx = 0;
for (int i = 0; i < track_get_key_count(track); i++) {
wti[idx] = track_get_key_time(track, i);
wtr[idx] = track_get_key_transition(track, i);
key_values[idx] = track_get_key_value(track, i);
idx++;
}
d["times"] = key_times;
d["transitions"] = key_transitions;
d["values"] = key_values;
if (track_get_type(track) == TYPE_VALUE) {
d["update"] = value_track_get_update_mode(track);
}
r_ret = d;
return true;
} else if (track_get_type(track) == TYPE_BEZIER) {
const BezierTrack *bt = static_cast<const BezierTrack *>(tracks[track]);
Dictionary d;
Vector<real_t> key_times;
Vector<real_t> key_points;
int kk = bt->values.size();
key_times.resize(kk);
key_points.resize(kk * 5);
real_t *wti = key_times.ptrw();
real_t *wpo = key_points.ptrw();
#ifdef TOOLS_ENABLED
Vector<int> handle_modes;
handle_modes.resize(kk);
int *whm = handle_modes.ptrw();
#endif // TOOLS_ENABLED
int idx = 0;
const TKey<BezierKey> *vls = bt->values.ptr();
for (int i = 0; i < kk; i++) {
wti[idx] = vls[i].time;
wpo[idx * 5 + 0] = vls[i].value.value;
wpo[idx * 5 + 1] = vls[i].value.in_handle.x;
wpo[idx * 5 + 2] = vls[i].value.in_handle.y;
wpo[idx * 5 + 3] = vls[i].value.out_handle.x;
wpo[idx * 5 + 4] = vls[i].value.out_handle.y;
#ifdef TOOLS_ENABLED
whm[idx] = static_cast<int>(vls[i].value.handle_mode);
#endif // TOOLS_ENABLED
idx++;
}
d["times"] = key_times;
d["points"] = key_points;
#ifdef TOOLS_ENABLED
d["handle_modes"] = handle_modes;
#endif // TOOLS_ENABLED
r_ret = d;
return true;
} else if (track_get_type(track) == TYPE_AUDIO) {
const AudioTrack *ad = static_cast<const AudioTrack *>(tracks[track]);
Dictionary d;
Vector<real_t> key_times;
Array clips;
int kk = ad->values.size();
key_times.resize(kk);
real_t *wti = key_times.ptrw();
int idx = 0;
const TKey<AudioKey> *vls = ad->values.ptr();
for (int i = 0; i < kk; i++) {
wti[idx] = vls[i].time;
Dictionary clip;
clip["start_offset"] = vls[i].value.start_offset;
clip["end_offset"] = vls[i].value.end_offset;
clip["stream"] = vls[i].value.stream;
clips.push_back(clip);
idx++;
}
d["times"] = key_times;
d["clips"] = clips;
r_ret = d;
return true;
} else if (track_get_type(track) == TYPE_ANIMATION) {
const AnimationTrack *an = static_cast<const AnimationTrack *>(tracks[track]);
Dictionary d;
Vector<real_t> key_times;
Vector<String> clips;
int kk = an->values.size();
key_times.resize(kk);
clips.resize(kk);
real_t *wti = key_times.ptrw();
String *wcl = clips.ptrw();
const TKey<StringName> *vls = an->values.ptr();
for (int i = 0; i < kk; i++) {
wti[i] = vls[i].time;
wcl[i] = vls[i].value;
}
d["times"] = key_times;
d["clips"] = clips;
r_ret = d;
return true;
}
} else {
return false;
}
} else {
return false;
}
return true;
}
void Animation::_get_property_list(List<PropertyInfo> *p_list) const {
if (compression.enabled) {
p_list->push_back(PropertyInfo(Variant::DICTIONARY, "_compression", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL));
}
p_list->push_back(PropertyInfo(Variant::ARRAY, "markers", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL));
for (int i = 0; i < tracks.size(); i++) {
p_list->push_back(PropertyInfo(Variant::STRING, "tracks/" + itos(i) + "/type", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL));
p_list->push_back(PropertyInfo(Variant::BOOL, "tracks/" + itos(i) + "/imported", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL));
p_list->push_back(PropertyInfo(Variant::BOOL, "tracks/" + itos(i) + "/enabled", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL));
p_list->push_back(PropertyInfo(Variant::NODE_PATH, "tracks/" + itos(i) + "/path", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL));
if (track_is_compressed(i)) {
p_list->push_back(PropertyInfo(Variant::INT, "tracks/" + itos(i) + "/compressed_track", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL));
} else {
p_list->push_back(PropertyInfo(Variant::INT, "tracks/" + itos(i) + "/interp", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL));
p_list->push_back(PropertyInfo(Variant::BOOL, "tracks/" + itos(i) + "/loop_wrap", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL));
p_list->push_back(PropertyInfo(Variant::ARRAY, "tracks/" + itos(i) + "/keys", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL));
}
if (track_get_type(i) == TYPE_AUDIO) {
p_list->push_back(PropertyInfo(Variant::BOOL, "tracks/" + itos(i) + "/use_blend", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL));
}
}
}
void Animation::reset_state() {
clear();
}
int Animation::add_track(TrackType p_type, int p_at_pos) {
if (p_at_pos < 0 || p_at_pos >= tracks.size()) {
p_at_pos = tracks.size();
}
switch (p_type) {
case TYPE_POSITION_3D: {
PositionTrack *tt = memnew(PositionTrack);
tracks.insert(p_at_pos, tt);
} break;
case TYPE_ROTATION_3D: {
RotationTrack *rt = memnew(RotationTrack);
tracks.insert(p_at_pos, rt);
} break;
case TYPE_SCALE_3D: {
ScaleTrack *st = memnew(ScaleTrack);
tracks.insert(p_at_pos, st);
} break;
case TYPE_BLEND_SHAPE: {
BlendShapeTrack *bst = memnew(BlendShapeTrack);
tracks.insert(p_at_pos, bst);
} break;
case TYPE_VALUE: {
tracks.insert(p_at_pos, memnew(ValueTrack));
} break;
case TYPE_METHOD: {
tracks.insert(p_at_pos, memnew(MethodTrack));
} break;
case TYPE_BEZIER: {
tracks.insert(p_at_pos, memnew(BezierTrack));
} break;
case TYPE_AUDIO: {
tracks.insert(p_at_pos, memnew(AudioTrack));
} break;
case TYPE_ANIMATION: {
tracks.insert(p_at_pos, memnew(AnimationTrack));
} break;
default: {
ERR_PRINT("Unknown track type");
}
}
emit_changed();
return p_at_pos;
}
void Animation::remove_track(int p_track) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t = tracks[p_track];
switch (t->type) {
case TYPE_POSITION_3D: {
PositionTrack *tt = static_cast<PositionTrack *>(t);
ERR_FAIL_COND_MSG(tt->compressed_track >= 0, "Compressed tracks can't be manually removed. Call clear() to get rid of compression first.");
_clear(tt->positions);
} break;
case TYPE_ROTATION_3D: {
RotationTrack *rt = static_cast<RotationTrack *>(t);
ERR_FAIL_COND_MSG(rt->compressed_track >= 0, "Compressed tracks can't be manually removed. Call clear() to get rid of compression first.");
_clear(rt->rotations);
} break;
case TYPE_SCALE_3D: {
ScaleTrack *st = static_cast<ScaleTrack *>(t);
ERR_FAIL_COND_MSG(st->compressed_track >= 0, "Compressed tracks can't be manually removed. Call clear() to get rid of compression first.");
_clear(st->scales);
} break;
case TYPE_BLEND_SHAPE: {
BlendShapeTrack *bst = static_cast<BlendShapeTrack *>(t);
ERR_FAIL_COND_MSG(bst->compressed_track >= 0, "Compressed tracks can't be manually removed. Call clear() to get rid of compression first.");
_clear(bst->blend_shapes);
} break;
case TYPE_VALUE: {
ValueTrack *vt = static_cast<ValueTrack *>(t);
_clear(vt->values);
} break;
case TYPE_METHOD: {
MethodTrack *mt = static_cast<MethodTrack *>(t);
_clear(mt->methods);
} break;
case TYPE_BEZIER: {
BezierTrack *bz = static_cast<BezierTrack *>(t);
_clear(bz->values);
} break;
case TYPE_AUDIO: {
AudioTrack *ad = static_cast<AudioTrack *>(t);
_clear(ad->values);
} break;
case TYPE_ANIMATION: {
AnimationTrack *an = static_cast<AnimationTrack *>(t);
_clear(an->values);
} break;
}
memdelete(t);
tracks.remove_at(p_track);
emit_changed();
_check_capture_included();
}
bool Animation::is_capture_included() const {
return capture_included;
}
void Animation::_check_capture_included() {
capture_included = false;
for (int i = 0; i < tracks.size(); i++) {
if (tracks[i]->type == TYPE_VALUE) {
ValueTrack *vt = static_cast<ValueTrack *>(tracks[i]);
if (vt->update_mode == UPDATE_CAPTURE) {
capture_included = true;
break;
}
}
}
}
int Animation::get_track_count() const {
return tracks.size();
}
Animation::TrackType Animation::track_get_type(int p_track) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), TYPE_VALUE);
return tracks[p_track]->type;
}
void Animation::track_set_path(int p_track, const NodePath &p_path) {
ERR_FAIL_INDEX(p_track, tracks.size());
tracks[p_track]->path = p_path;
_track_update_hash(p_track);
emit_changed();
}
NodePath Animation::track_get_path(int p_track) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), NodePath());
return tracks[p_track]->path;
}
int Animation::find_track(const NodePath &p_path, const TrackType p_type) const {
for (int i = 0; i < tracks.size(); i++) {
if (tracks[i]->path == p_path && tracks[i]->type == p_type) {
return i;
}
};
return -1;
};
Animation::TrackType Animation::get_cache_type(TrackType p_type) {
if (p_type == Animation::TYPE_BEZIER) {
return Animation::TYPE_VALUE;
}
if (p_type == Animation::TYPE_ROTATION_3D || p_type == Animation::TYPE_SCALE_3D) {
return Animation::TYPE_POSITION_3D; // Reference them as position3D tracks, even if they modify rotation or scale.
}
return p_type;
}
void Animation::_track_update_hash(int p_track) {
NodePath track_path = tracks[p_track]->path;
TrackType track_cache_type = get_cache_type(tracks[p_track]->type);
tracks[p_track]->thash = StringName(String(track_path.get_concatenated_names()) + String(track_path.get_concatenated_subnames()) + itos(track_cache_type)).hash();
}
Animation::TypeHash Animation::track_get_type_hash(int p_track) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), 0);
return tracks[p_track]->thash;
}
void Animation::track_set_interpolation_type(int p_track, InterpolationType p_interp) {
ERR_FAIL_INDEX(p_track, tracks.size());
tracks[p_track]->interpolation = p_interp;
emit_changed();
}
Animation::InterpolationType Animation::track_get_interpolation_type(int p_track) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), INTERPOLATION_NEAREST);
return tracks[p_track]->interpolation;
}
void Animation::track_set_interpolation_loop_wrap(int p_track, bool p_enable) {
ERR_FAIL_INDEX(p_track, tracks.size());
tracks[p_track]->loop_wrap = p_enable;
emit_changed();
}
bool Animation::track_get_interpolation_loop_wrap(int p_track) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), INTERPOLATION_NEAREST);
return tracks[p_track]->loop_wrap;
}
template <typename T, typename V>
int Animation::_insert(double p_time, T &p_keys, const V &p_value) {
int idx = p_keys.size();
while (true) {
// Condition for replacement.
if (idx > 0 && Math::is_equal_approx((double)p_keys[idx - 1].time, p_time)) {
float transition = p_keys[idx - 1].transition;
p_keys.write[idx - 1] = p_value;
p_keys.write[idx - 1].transition = transition;
return idx - 1;
// Condition for insert.
} else if (idx == 0 || p_keys[idx - 1].time < p_time) {
p_keys.insert(idx, p_value);
return idx;
}
idx--;
}
return -1;
}
int Animation::_marker_insert(double p_time, Vector<MarkerKey> &p_keys, const MarkerKey &p_value) {
int idx = p_keys.size();
while (true) {
// Condition for replacement.
if (idx > 0 && Math::is_equal_approx((double)p_keys[idx - 1].time, p_time)) {
p_keys.write[idx - 1] = p_value;
return idx - 1;
// Condition for insert.
} else if (idx == 0 || p_keys[idx - 1].time < p_time) {
p_keys.insert(idx, p_value);
return idx;
}
idx--;
}
return -1;
}
template <typename T>
void Animation::_clear(T &p_keys) {
p_keys.clear();
}
////
int Animation::position_track_insert_key(int p_track, double p_time, const Vector3 &p_position) {
ERR_FAIL_INDEX_V(p_track, tracks.size(), -1);
Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_POSITION_3D, -1);
PositionTrack *tt = static_cast<PositionTrack *>(t);
ERR_FAIL_COND_V(tt->compressed_track >= 0, -1);
TKey<Vector3> tkey;
tkey.time = p_time;
tkey.value = p_position;
int ret = _insert(p_time, tt->positions, tkey);
emit_changed();
return ret;
}
Error Animation::position_track_get_key(int p_track, int p_key, Vector3 *r_position) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), ERR_INVALID_PARAMETER);
Track *t = tracks[p_track];
PositionTrack *tt = static_cast<PositionTrack *>(t);
ERR_FAIL_COND_V(t->type != TYPE_POSITION_3D, ERR_INVALID_PARAMETER);
if (tt->compressed_track >= 0) {
Vector3i key;
double time;
bool fetch_success = _fetch_compressed_by_index<3>(tt->compressed_track, p_key, key, time);
if (!fetch_success) {
return ERR_INVALID_PARAMETER;
}
*r_position = _uncompress_pos_scale(tt->compressed_track, key);
return OK;
}
ERR_FAIL_INDEX_V(p_key, tt->positions.size(), ERR_INVALID_PARAMETER);
*r_position = tt->positions[p_key].value;
return OK;
}
Error Animation::try_position_track_interpolate(int p_track, double p_time, Vector3 *r_interpolation, bool p_backward) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), ERR_INVALID_PARAMETER);
Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_POSITION_3D, ERR_INVALID_PARAMETER);
PositionTrack *tt = static_cast<PositionTrack *>(t);
if (tt->compressed_track >= 0) {
if (_pos_scale_interpolate_compressed(tt->compressed_track, p_time, *r_interpolation)) {
return OK;
} else {
return ERR_UNAVAILABLE;
}
}
bool ok = false;
Vector3 tk = _interpolate(tt->positions, p_time, tt->interpolation, tt->loop_wrap, &ok, p_backward);
if (!ok) {
return ERR_UNAVAILABLE;
}
*r_interpolation = tk;
return OK;
}
Vector3 Animation::position_track_interpolate(int p_track, double p_time, bool p_backward) const {
Vector3 ret = Vector3(0, 0, 0);
ERR_FAIL_INDEX_V(p_track, tracks.size(), ret);
bool err = try_position_track_interpolate(p_track, p_time, &ret, p_backward);
ERR_FAIL_COND_V_MSG(err, ret, "3D Position Track: '" + tracks[p_track]->path + "' is unavailable.");
return ret;
}
////
int Animation::rotation_track_insert_key(int p_track, double p_time, const Quaternion &p_rotation) {
ERR_FAIL_INDEX_V(p_track, tracks.size(), -1);
Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_ROTATION_3D, -1);
RotationTrack *rt = static_cast<RotationTrack *>(t);
ERR_FAIL_COND_V(rt->compressed_track >= 0, -1);
TKey<Quaternion> tkey;
tkey.time = p_time;
tkey.value = p_rotation;
int ret = _insert(p_time, rt->rotations, tkey);
emit_changed();
return ret;
}
Error Animation::rotation_track_get_key(int p_track, int p_key, Quaternion *r_rotation) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), ERR_INVALID_PARAMETER);
Track *t = tracks[p_track];
RotationTrack *rt = static_cast<RotationTrack *>(t);
ERR_FAIL_COND_V(t->type != TYPE_ROTATION_3D, ERR_INVALID_PARAMETER);
if (rt->compressed_track >= 0) {
Vector3i key;
double time;
bool fetch_success = _fetch_compressed_by_index<3>(rt->compressed_track, p_key, key, time);
if (!fetch_success) {
return ERR_INVALID_PARAMETER;
}
*r_rotation = _uncompress_quaternion(key);
return OK;
}
ERR_FAIL_INDEX_V(p_key, rt->rotations.size(), ERR_INVALID_PARAMETER);
*r_rotation = rt->rotations[p_key].value;
return OK;
}
Error Animation::try_rotation_track_interpolate(int p_track, double p_time, Quaternion *r_interpolation, bool p_backward) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), ERR_INVALID_PARAMETER);
Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_ROTATION_3D, ERR_INVALID_PARAMETER);
RotationTrack *rt = static_cast<RotationTrack *>(t);
if (rt->compressed_track >= 0) {
if (_rotation_interpolate_compressed(rt->compressed_track, p_time, *r_interpolation)) {
return OK;
} else {
return ERR_UNAVAILABLE;
}
}
bool ok = false;
Quaternion tk = _interpolate(rt->rotations, p_time, rt->interpolation, rt->loop_wrap, &ok, p_backward);
if (!ok) {
return ERR_UNAVAILABLE;
}
*r_interpolation = tk;
return OK;
}
Quaternion Animation::rotation_track_interpolate(int p_track, double p_time, bool p_backward) const {
Quaternion ret = Quaternion(0, 0, 0, 1);
ERR_FAIL_INDEX_V(p_track, tracks.size(), ret);
bool err = try_rotation_track_interpolate(p_track, p_time, &ret, p_backward);
ERR_FAIL_COND_V_MSG(err, ret, "3D Rotation Track: '" + tracks[p_track]->path + "' is unavailable.");
return ret;
}
////
int Animation::scale_track_insert_key(int p_track, double p_time, const Vector3 &p_scale) {
ERR_FAIL_INDEX_V(p_track, tracks.size(), -1);
Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_SCALE_3D, -1);
ScaleTrack *st = static_cast<ScaleTrack *>(t);
ERR_FAIL_COND_V(st->compressed_track >= 0, -1);
TKey<Vector3> tkey;
tkey.time = p_time;
tkey.value = p_scale;
int ret = _insert(p_time, st->scales, tkey);
emit_changed();
return ret;
}
Error Animation::scale_track_get_key(int p_track, int p_key, Vector3 *r_scale) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), ERR_INVALID_PARAMETER);
Track *t = tracks[p_track];
ScaleTrack *st = static_cast<ScaleTrack *>(t);
ERR_FAIL_COND_V(t->type != TYPE_SCALE_3D, ERR_INVALID_PARAMETER);
if (st->compressed_track >= 0) {
Vector3i key;
double time;
bool fetch_success = _fetch_compressed_by_index<3>(st->compressed_track, p_key, key, time);
if (!fetch_success) {
return ERR_INVALID_PARAMETER;
}
*r_scale = _uncompress_pos_scale(st->compressed_track, key);
return OK;
}
ERR_FAIL_INDEX_V(p_key, st->scales.size(), ERR_INVALID_PARAMETER);
*r_scale = st->scales[p_key].value;
return OK;
}
Error Animation::try_scale_track_interpolate(int p_track, double p_time, Vector3 *r_interpolation, bool p_backward) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), ERR_INVALID_PARAMETER);
Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_SCALE_3D, ERR_INVALID_PARAMETER);
ScaleTrack *st = static_cast<ScaleTrack *>(t);
if (st->compressed_track >= 0) {
if (_pos_scale_interpolate_compressed(st->compressed_track, p_time, *r_interpolation)) {
return OK;
} else {
return ERR_UNAVAILABLE;
}
}
bool ok = false;
Vector3 tk = _interpolate(st->scales, p_time, st->interpolation, st->loop_wrap, &ok, p_backward);
if (!ok) {
return ERR_UNAVAILABLE;
}
*r_interpolation = tk;
return OK;
}
Vector3 Animation::scale_track_interpolate(int p_track, double p_time, bool p_backward) const {
Vector3 ret = Vector3(1, 1, 1);
ERR_FAIL_INDEX_V(p_track, tracks.size(), ret);
bool err = try_scale_track_interpolate(p_track, p_time, &ret, p_backward);
ERR_FAIL_COND_V_MSG(err, ret, "3D Scale Track: '" + tracks[p_track]->path + "' is unavailable.");
return ret;
}
////
int Animation::blend_shape_track_insert_key(int p_track, double p_time, float p_blend_shape) {
ERR_FAIL_INDEX_V(p_track, tracks.size(), -1);
Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_BLEND_SHAPE, -1);
BlendShapeTrack *st = static_cast<BlendShapeTrack *>(t);
ERR_FAIL_COND_V(st->compressed_track >= 0, -1);
TKey<float> tkey;
tkey.time = p_time;
tkey.value = p_blend_shape;
int ret = _insert(p_time, st->blend_shapes, tkey);
emit_changed();
return ret;
}
Error Animation::blend_shape_track_get_key(int p_track, int p_key, float *r_blend_shape) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), ERR_INVALID_PARAMETER);
Track *t = tracks[p_track];
BlendShapeTrack *bst = static_cast<BlendShapeTrack *>(t);
ERR_FAIL_COND_V(t->type != TYPE_BLEND_SHAPE, ERR_INVALID_PARAMETER);
if (bst->compressed_track >= 0) {
Vector3i key;
double time;
bool fetch_success = _fetch_compressed_by_index<1>(bst->compressed_track, p_key, key, time);
if (!fetch_success) {
return ERR_INVALID_PARAMETER;
}
*r_blend_shape = _uncompress_blend_shape(key);
return OK;
}
ERR_FAIL_INDEX_V(p_key, bst->blend_shapes.size(), ERR_INVALID_PARAMETER);
*r_blend_shape = bst->blend_shapes[p_key].value;
return OK;
}
Error Animation::try_blend_shape_track_interpolate(int p_track, double p_time, float *r_interpolation, bool p_backward) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), ERR_INVALID_PARAMETER);
Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_BLEND_SHAPE, ERR_INVALID_PARAMETER);
BlendShapeTrack *bst = static_cast<BlendShapeTrack *>(t);
if (bst->compressed_track >= 0) {
if (_blend_shape_interpolate_compressed(bst->compressed_track, p_time, *r_interpolation)) {
return OK;
} else {
return ERR_UNAVAILABLE;
}
}
bool ok = false;
float tk = _interpolate(bst->blend_shapes, p_time, bst->interpolation, bst->loop_wrap, &ok, p_backward);
if (!ok) {
return ERR_UNAVAILABLE;
}
*r_interpolation = tk;
return OK;
}
float Animation::blend_shape_track_interpolate(int p_track, double p_time, bool p_backward) const {
float ret = 0;
ERR_FAIL_INDEX_V(p_track, tracks.size(), ret);
bool err = try_blend_shape_track_interpolate(p_track, p_time, &ret, p_backward);
ERR_FAIL_COND_V_MSG(err, ret, "Blend Shape Track: '" + tracks[p_track]->path + "' is unavailable.");
return ret;
}
////
void Animation::track_remove_key_at_time(int p_track, double p_time) {
int idx = track_find_key(p_track, p_time, FIND_MODE_APPROX);
ERR_FAIL_COND(idx < 0);
track_remove_key(p_track, idx);
}
void Animation::track_remove_key(int p_track, int p_idx) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t = tracks[p_track];
switch (t->type) {
case TYPE_POSITION_3D: {
PositionTrack *tt = static_cast<PositionTrack *>(t);
ERR_FAIL_COND(tt->compressed_track >= 0);
ERR_FAIL_INDEX(p_idx, tt->positions.size());
tt->positions.remove_at(p_idx);
} break;
case TYPE_ROTATION_3D: {
RotationTrack *rt = static_cast<RotationTrack *>(t);
ERR_FAIL_COND(rt->compressed_track >= 0);
ERR_FAIL_INDEX(p_idx, rt->rotations.size());
rt->rotations.remove_at(p_idx);
} break;
case TYPE_SCALE_3D: {
ScaleTrack *st = static_cast<ScaleTrack *>(t);
ERR_FAIL_COND(st->compressed_track >= 0);
ERR_FAIL_INDEX(p_idx, st->scales.size());
st->scales.remove_at(p_idx);
} break;
case TYPE_BLEND_SHAPE: {
BlendShapeTrack *bst = static_cast<BlendShapeTrack *>(t);
ERR_FAIL_COND(bst->compressed_track >= 0);
ERR_FAIL_INDEX(p_idx, bst->blend_shapes.size());
bst->blend_shapes.remove_at(p_idx);
} break;
case TYPE_VALUE: {
ValueTrack *vt = static_cast<ValueTrack *>(t);
ERR_FAIL_INDEX(p_idx, vt->values.size());
vt->values.remove_at(p_idx);
} break;
case TYPE_METHOD: {
MethodTrack *mt = static_cast<MethodTrack *>(t);
ERR_FAIL_INDEX(p_idx, mt->methods.size());
mt->methods.remove_at(p_idx);
} break;
case TYPE_BEZIER: {
BezierTrack *bz = static_cast<BezierTrack *>(t);
ERR_FAIL_INDEX(p_idx, bz->values.size());
bz->values.remove_at(p_idx);
} break;
case TYPE_AUDIO: {
AudioTrack *ad = static_cast<AudioTrack *>(t);
ERR_FAIL_INDEX(p_idx, ad->values.size());
ad->values.remove_at(p_idx);
} break;
case TYPE_ANIMATION: {
AnimationTrack *an = static_cast<AnimationTrack *>(t);
ERR_FAIL_INDEX(p_idx, an->values.size());
an->values.remove_at(p_idx);
} break;
}
emit_changed();
}
int Animation::track_find_key(int p_track, double p_time, FindMode p_find_mode, bool p_limit, bool p_backward) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), -1);
Track *t = tracks[p_track];
switch (t->type) {
case TYPE_POSITION_3D: {
PositionTrack *tt = static_cast<PositionTrack *>(t);
if (tt->compressed_track >= 0) {
double time;
double time_next;
Vector3i key;
Vector3i key_next;
uint32_t key_index;
bool fetch_compressed_success = _fetch_compressed<3>(tt->compressed_track, p_time, key, time, key_next, time_next, &key_index);
ERR_FAIL_COND_V(!fetch_compressed_success, -1);
if ((p_find_mode == FIND_MODE_APPROX && !Math::is_equal_approx(time, p_time)) || (p_find_mode == FIND_MODE_EXACT && time != p_time)) {
return -1;
}
return key_index;
}
int k = _find(tt->positions, p_time, p_backward, p_limit);
if (k < 0 || k >= tt->positions.size()) {
return -1;
}
if ((p_find_mode == FIND_MODE_APPROX && !Math::is_equal_approx(tt->positions[k].time, p_time)) || (p_find_mode == FIND_MODE_EXACT && tt->positions[k].time != p_time)) {
return -1;
}
return k;
} break;
case TYPE_ROTATION_3D: {
RotationTrack *rt = static_cast<RotationTrack *>(t);
if (rt->compressed_track >= 0) {
double time;
double time_next;
Vector3i key;
Vector3i key_next;
uint32_t key_index;
bool fetch_compressed_success = _fetch_compressed<3>(rt->compressed_track, p_time, key, time, key_next, time_next, &key_index);
ERR_FAIL_COND_V(!fetch_compressed_success, -1);
if ((p_find_mode == FIND_MODE_APPROX && !Math::is_equal_approx(time, p_time)) || (p_find_mode == FIND_MODE_EXACT && time != p_time)) {
return -1;
}
return key_index;
}
int k = _find(rt->rotations, p_time, p_backward, p_limit);
if (k < 0 || k >= rt->rotations.size()) {
return -1;
}
if ((p_find_mode == FIND_MODE_APPROX && !Math::is_equal_approx(rt->rotations[k].time, p_time)) || (p_find_mode == FIND_MODE_EXACT && rt->rotations[k].time != p_time)) {
return -1;
}
return k;
} break;
case TYPE_SCALE_3D: {
ScaleTrack *st = static_cast<ScaleTrack *>(t);
if (st->compressed_track >= 0) {
double time;
double time_next;
Vector3i key;
Vector3i key_next;
uint32_t key_index;
bool fetch_compressed_success = _fetch_compressed<3>(st->compressed_track, p_time, key, time, key_next, time_next, &key_index);
ERR_FAIL_COND_V(!fetch_compressed_success, -1);
if ((p_find_mode == FIND_MODE_APPROX && !Math::is_equal_approx(time, p_time)) || (p_find_mode == FIND_MODE_EXACT && time != p_time)) {
return -1;
}
return key_index;
}
int k = _find(st->scales, p_time, p_backward, p_limit);
if (k < 0 || k >= st->scales.size()) {
return -1;
}
if ((p_find_mode == FIND_MODE_APPROX && !Math::is_equal_approx(st->scales[k].time, p_time)) || (p_find_mode == FIND_MODE_EXACT && st->scales[k].time != p_time)) {
return -1;
}
return k;
} break;
case TYPE_BLEND_SHAPE: {
BlendShapeTrack *bst = static_cast<BlendShapeTrack *>(t);
if (bst->compressed_track >= 0) {
double time;
double time_next;
Vector3i key;
Vector3i key_next;
uint32_t key_index;
bool fetch_compressed_success = _fetch_compressed<1>(bst->compressed_track, p_time, key, time, key_next, time_next, &key_index);
ERR_FAIL_COND_V(!fetch_compressed_success, -1);
if ((p_find_mode == FIND_MODE_APPROX && !Math::is_equal_approx(time, p_time)) || (p_find_mode == FIND_MODE_EXACT && time != p_time)) {
return -1;
}
return key_index;
}
int k = _find(bst->blend_shapes, p_time, p_backward, p_limit);
if (k < 0 || k >= bst->blend_shapes.size()) {
return -1;
}
if ((p_find_mode == FIND_MODE_APPROX && !Math::is_equal_approx(bst->blend_shapes[k].time, p_time)) || (p_find_mode == FIND_MODE_EXACT && bst->blend_shapes[k].time != p_time)) {
return -1;
}
return k;
} break;
case TYPE_VALUE: {
ValueTrack *vt = static_cast<ValueTrack *>(t);
int k = _find(vt->values, p_time, p_backward, p_limit);
if (k < 0 || k >= vt->values.size()) {
return -1;
}
if ((p_find_mode == FIND_MODE_APPROX && !Math::is_equal_approx(vt->values[k].time, p_time)) || (p_find_mode == FIND_MODE_EXACT && vt->values[k].time != p_time)) {
return -1;
}
return k;
} break;
case TYPE_METHOD: {
MethodTrack *mt = static_cast<MethodTrack *>(t);
int k = _find(mt->methods, p_time, p_backward, p_limit);
if (k < 0 || k >= mt->methods.size()) {
return -1;
}
if ((p_find_mode == FIND_MODE_APPROX && !Math::is_equal_approx(mt->methods[k].time, p_time)) || (p_find_mode == FIND_MODE_EXACT && mt->methods[k].time != p_time)) {
return -1;
}
return k;
} break;
case TYPE_BEZIER: {
BezierTrack *bt = static_cast<BezierTrack *>(t);
int k = _find(bt->values, p_time, p_backward, p_limit);
if (k < 0 || k >= bt->values.size()) {
return -1;
}
if ((p_find_mode == FIND_MODE_APPROX && !Math::is_equal_approx(bt->values[k].time, p_time)) || (p_find_mode == FIND_MODE_EXACT && bt->values[k].time != p_time)) {
return -1;
}
return k;
} break;
case TYPE_AUDIO: {
AudioTrack *at = static_cast<AudioTrack *>(t);
int k = _find(at->values, p_time, p_backward, p_limit);
if (k < 0 || k >= at->values.size()) {
return -1;
}
if ((p_find_mode == FIND_MODE_APPROX && !Math::is_equal_approx(at->values[k].time, p_time)) || (p_find_mode == FIND_MODE_EXACT && at->values[k].time != p_time)) {
return -1;
}
return k;
} break;
case TYPE_ANIMATION: {
AnimationTrack *at = static_cast<AnimationTrack *>(t);
int k = _find(at->values, p_time, p_backward, p_limit);
if (k < 0 || k >= at->values.size()) {
return -1;
}
if ((p_find_mode == FIND_MODE_APPROX && !Math::is_equal_approx(at->values[k].time, p_time)) || (p_find_mode == FIND_MODE_EXACT && at->values[k].time != p_time)) {
return -1;
}
return k;
} break;
}
return -1;
}
int Animation::track_insert_key(int p_track, double p_time, const Variant &p_key, real_t p_transition) {
ERR_FAIL_INDEX_V(p_track, tracks.size(), -1);
Track *t = tracks[p_track];
int ret = -1;
switch (t->type) {
case TYPE_POSITION_3D: {
ERR_FAIL_COND_V((p_key.get_type() != Variant::VECTOR3) && (p_key.get_type() != Variant::VECTOR3I), -1);
ret = position_track_insert_key(p_track, p_time, p_key);
track_set_key_transition(p_track, ret, p_transition);
} break;
case TYPE_ROTATION_3D: {
ERR_FAIL_COND_V((p_key.get_type() != Variant::QUATERNION) && (p_key.get_type() != Variant::BASIS), -1);
ret = rotation_track_insert_key(p_track, p_time, p_key);
track_set_key_transition(p_track, ret, p_transition);
} break;
case TYPE_SCALE_3D: {
ERR_FAIL_COND_V((p_key.get_type() != Variant::VECTOR3) && (p_key.get_type() != Variant::VECTOR3I), -1);
ret = scale_track_insert_key(p_track, p_time, p_key);
track_set_key_transition(p_track, ret, p_transition);
} break;
case TYPE_BLEND_SHAPE: {
ERR_FAIL_COND_V((p_key.get_type() != Variant::FLOAT) && (p_key.get_type() != Variant::INT), -1);
ret = blend_shape_track_insert_key(p_track, p_time, p_key);
track_set_key_transition(p_track, ret, p_transition);
} break;
case TYPE_VALUE: {
ValueTrack *vt = static_cast<ValueTrack *>(t);
TKey<Variant> k;
k.time = p_time;
k.transition = p_transition;
k.value = p_key;
ret = _insert(p_time, vt->values, k);
} break;
case TYPE_METHOD: {
MethodTrack *mt = static_cast<MethodTrack *>(t);
ERR_FAIL_COND_V(p_key.get_type() != Variant::DICTIONARY, -1);
Dictionary d = p_key;
ERR_FAIL_COND_V(!d.has("method") || !d["method"].is_string(), -1);
ERR_FAIL_COND_V(!d.has("args") || !d["args"].is_array(), -1);
MethodKey k;
k.time = p_time;
k.transition = p_transition;
k.method = d["method"];
k.params = d["args"];
ret = _insert(p_time, mt->methods, k);
} break;
case TYPE_BEZIER: {
BezierTrack *bt = static_cast<BezierTrack *>(t);
Array arr = p_key;
ERR_FAIL_COND_V(arr.size() != 5, -1);
TKey<BezierKey> k;
k.time = p_time;
k.value.value = arr[0];
k.value.in_handle.x = arr[1];
k.value.in_handle.y = arr[2];
k.value.out_handle.x = arr[3];
k.value.out_handle.y = arr[4];
ret = _insert(p_time, bt->values, k);
Vector<int> key_neighborhood;
key_neighborhood.push_back(ret);
if (ret > 0) {
key_neighborhood.push_back(ret - 1);
}
if (ret < track_get_key_count(p_track) - 1) {
key_neighborhood.push_back(ret + 1);
}
} break;
case TYPE_AUDIO: {
AudioTrack *at = static_cast<AudioTrack *>(t);
Dictionary k = p_key;
ERR_FAIL_COND_V(!k.has("start_offset"), -1);
ERR_FAIL_COND_V(!k.has("end_offset"), -1);
ERR_FAIL_COND_V(!k.has("stream"), -1);
TKey<AudioKey> ak;
ak.time = p_time;
ak.value.start_offset = k["start_offset"];
ak.value.end_offset = k["end_offset"];
ak.value.stream = k["stream"];
ret = _insert(p_time, at->values, ak);
} break;
case TYPE_ANIMATION: {
AnimationTrack *at = static_cast<AnimationTrack *>(t);
TKey<StringName> ak;
ak.time = p_time;
ak.value = p_key;
ret = _insert(p_time, at->values, ak);
} break;
}
emit_changed();
return ret;
}
int Animation::track_get_key_count(int p_track) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), -1);
Track *t = tracks[p_track];
switch (t->type) {
case TYPE_POSITION_3D: {
PositionTrack *tt = static_cast<PositionTrack *>(t);
if (tt->compressed_track >= 0) {
return _get_compressed_key_count(tt->compressed_track);
}
return tt->positions.size();
} break;
case TYPE_ROTATION_3D: {
RotationTrack *rt = static_cast<RotationTrack *>(t);
if (rt->compressed_track >= 0) {
return _get_compressed_key_count(rt->compressed_track);
}
return rt->rotations.size();
} break;
case TYPE_SCALE_3D: {
ScaleTrack *st = static_cast<ScaleTrack *>(t);
if (st->compressed_track >= 0) {
return _get_compressed_key_count(st->compressed_track);
}
return st->scales.size();
} break;
case TYPE_BLEND_SHAPE: {
BlendShapeTrack *bst = static_cast<BlendShapeTrack *>(t);
if (bst->compressed_track >= 0) {
return _get_compressed_key_count(bst->compressed_track);
}
return bst->blend_shapes.size();
} break;
case TYPE_VALUE: {
ValueTrack *vt = static_cast<ValueTrack *>(t);
return vt->values.size();
} break;
case TYPE_METHOD: {
MethodTrack *mt = static_cast<MethodTrack *>(t);
return mt->methods.size();
} break;
case TYPE_BEZIER: {
BezierTrack *bt = static_cast<BezierTrack *>(t);
return bt->values.size();
} break;
case TYPE_AUDIO: {
AudioTrack *at = static_cast<AudioTrack *>(t);
return at->values.size();
} break;
case TYPE_ANIMATION: {
AnimationTrack *at = static_cast<AnimationTrack *>(t);
return at->values.size();
} break;
}
ERR_FAIL_V(-1);
}
Variant Animation::track_get_key_value(int p_track, int p_key_idx) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), Variant());
Track *t = tracks[p_track];
switch (t->type) {
case TYPE_POSITION_3D: {
Vector3 value;
position_track_get_key(p_track, p_key_idx, &value);
return value;
} break;
case TYPE_ROTATION_3D: {
Quaternion value;
rotation_track_get_key(p_track, p_key_idx, &value);
return value;
} break;
case TYPE_SCALE_3D: {
Vector3 value;
scale_track_get_key(p_track, p_key_idx, &value);
return value;
} break;
case TYPE_BLEND_SHAPE: {
float value;
blend_shape_track_get_key(p_track, p_key_idx, &value);
return value;
} break;
case TYPE_VALUE: {
ValueTrack *vt = static_cast<ValueTrack *>(t);
ERR_FAIL_INDEX_V(p_key_idx, vt->values.size(), Variant());
return vt->values[p_key_idx].value;
} break;
case TYPE_METHOD: {
MethodTrack *mt = static_cast<MethodTrack *>(t);
ERR_FAIL_INDEX_V(p_key_idx, mt->methods.size(), Variant());
Dictionary d;
d["method"] = mt->methods[p_key_idx].method;
d["args"] = mt->methods[p_key_idx].params;
return d;
} break;
case TYPE_BEZIER: {
BezierTrack *bt = static_cast<BezierTrack *>(t);
ERR_FAIL_INDEX_V(p_key_idx, bt->values.size(), Variant());
Array arr;
arr.resize(5);
arr[0] = bt->values[p_key_idx].value.value;
arr[1] = bt->values[p_key_idx].value.in_handle.x;
arr[2] = bt->values[p_key_idx].value.in_handle.y;
arr[3] = bt->values[p_key_idx].value.out_handle.x;
arr[4] = bt->values[p_key_idx].value.out_handle.y;
return arr;
} break;
case TYPE_AUDIO: {
AudioTrack *at = static_cast<AudioTrack *>(t);
ERR_FAIL_INDEX_V(p_key_idx, at->values.size(), Variant());
Dictionary k;
k["start_offset"] = at->values[p_key_idx].value.start_offset;
k["end_offset"] = at->values[p_key_idx].value.end_offset;
k["stream"] = at->values[p_key_idx].value.stream;
return k;
} break;
case TYPE_ANIMATION: {
AnimationTrack *at = static_cast<AnimationTrack *>(t);
ERR_FAIL_INDEX_V(p_key_idx, at->values.size(), Variant());
return at->values[p_key_idx].value;
} break;
}
ERR_FAIL_V(Variant());
}
double Animation::track_get_key_time(int p_track, int p_key_idx) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), -1);
Track *t = tracks[p_track];
switch (t->type) {
case TYPE_POSITION_3D: {
PositionTrack *tt = static_cast<PositionTrack *>(t);
if (tt->compressed_track >= 0) {
Vector3i value;
double time;
bool fetch_compressed_success = _fetch_compressed_by_index<3>(tt->compressed_track, p_key_idx, value, time);
ERR_FAIL_COND_V(!fetch_compressed_success, false);
return time;
}
ERR_FAIL_INDEX_V(p_key_idx, tt->positions.size(), -1);
return tt->positions[p_key_idx].time;
} break;
case TYPE_ROTATION_3D: {
RotationTrack *rt = static_cast<RotationTrack *>(t);
if (rt->compressed_track >= 0) {
Vector3i value;
double time;
bool fetch_compressed_success = _fetch_compressed_by_index<3>(rt->compressed_track, p_key_idx, value, time);
ERR_FAIL_COND_V(!fetch_compressed_success, false);
return time;
}
ERR_FAIL_INDEX_V(p_key_idx, rt->rotations.size(), -1);
return rt->rotations[p_key_idx].time;
} break;
case TYPE_SCALE_3D: {
ScaleTrack *st = static_cast<ScaleTrack *>(t);
if (st->compressed_track >= 0) {
Vector3i value;
double time;
bool fetch_compressed_success = _fetch_compressed_by_index<3>(st->compressed_track, p_key_idx, value, time);
ERR_FAIL_COND_V(!fetch_compressed_success, false);
return time;
}
ERR_FAIL_INDEX_V(p_key_idx, st->scales.size(), -1);
return st->scales[p_key_idx].time;
} break;
case TYPE_BLEND_SHAPE: {
BlendShapeTrack *bst = static_cast<BlendShapeTrack *>(t);
if (bst->compressed_track >= 0) {
Vector3i value;
double time;
bool fetch_compressed_success = _fetch_compressed_by_index<1>(bst->compressed_track, p_key_idx, value, time);
ERR_FAIL_COND_V(!fetch_compressed_success, false);
return time;
}
ERR_FAIL_INDEX_V(p_key_idx, bst->blend_shapes.size(), -1);
return bst->blend_shapes[p_key_idx].time;
} break;
case TYPE_VALUE: {
ValueTrack *vt = static_cast<ValueTrack *>(t);
ERR_FAIL_INDEX_V(p_key_idx, vt->values.size(), -1);
return vt->values[p_key_idx].time;
} break;
case TYPE_METHOD: {
MethodTrack *mt = static_cast<MethodTrack *>(t);
ERR_FAIL_INDEX_V(p_key_idx, mt->methods.size(), -1);
return mt->methods[p_key_idx].time;
} break;
case TYPE_BEZIER: {
BezierTrack *bt = static_cast<BezierTrack *>(t);
ERR_FAIL_INDEX_V(p_key_idx, bt->values.size(), -1);
return bt->values[p_key_idx].time;
} break;
case TYPE_AUDIO: {
AudioTrack *at = static_cast<AudioTrack *>(t);
ERR_FAIL_INDEX_V(p_key_idx, at->values.size(), -1);
return at->values[p_key_idx].time;
} break;
case TYPE_ANIMATION: {
AnimationTrack *at = static_cast<AnimationTrack *>(t);
ERR_FAIL_INDEX_V(p_key_idx, at->values.size(), -1);
return at->values[p_key_idx].time;
} break;
}
ERR_FAIL_V(-1);
}
void Animation::track_set_key_time(int p_track, int p_key_idx, double p_time) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t = tracks[p_track];
switch (t->type) {
case TYPE_POSITION_3D: {
PositionTrack *tt = static_cast<PositionTrack *>(t);
ERR_FAIL_COND(tt->compressed_track >= 0);
ERR_FAIL_INDEX(p_key_idx, tt->positions.size());
TKey<Vector3> key = tt->positions[p_key_idx];
key.time = p_time;
tt->positions.remove_at(p_key_idx);
_insert(p_time, tt->positions, key);
return;
}
case TYPE_ROTATION_3D: {
RotationTrack *tt = static_cast<RotationTrack *>(t);
ERR_FAIL_COND(tt->compressed_track >= 0);
ERR_FAIL_INDEX(p_key_idx, tt->rotations.size());
TKey<Quaternion> key = tt->rotations[p_key_idx];
key.time = p_time;
tt->rotations.remove_at(p_key_idx);
_insert(p_time, tt->rotations, key);
return;
}
case TYPE_SCALE_3D: {
ScaleTrack *tt = static_cast<ScaleTrack *>(t);
ERR_FAIL_COND(tt->compressed_track >= 0);
ERR_FAIL_INDEX(p_key_idx, tt->scales.size());
TKey<Vector3> key = tt->scales[p_key_idx];
key.time = p_time;
tt->scales.remove_at(p_key_idx);
_insert(p_time, tt->scales, key);
return;
}
case TYPE_BLEND_SHAPE: {
BlendShapeTrack *tt = static_cast<BlendShapeTrack *>(t);
ERR_FAIL_COND(tt->compressed_track >= 0);
ERR_FAIL_INDEX(p_key_idx, tt->blend_shapes.size());
TKey<float> key = tt->blend_shapes[p_key_idx];
key.time = p_time;
tt->blend_shapes.remove_at(p_key_idx);
_insert(p_time, tt->blend_shapes, key);
return;
}
case TYPE_VALUE: {
ValueTrack *vt = static_cast<ValueTrack *>(t);
ERR_FAIL_INDEX(p_key_idx, vt->values.size());
TKey<Variant> key = vt->values[p_key_idx];
key.time = p_time;
vt->values.remove_at(p_key_idx);
_insert(p_time, vt->values, key);
return;
}
case TYPE_METHOD: {
MethodTrack *mt = static_cast<MethodTrack *>(t);
ERR_FAIL_INDEX(p_key_idx, mt->methods.size());
MethodKey key = mt->methods[p_key_idx];
key.time = p_time;
mt->methods.remove_at(p_key_idx);
_insert(p_time, mt->methods, key);
return;
}
case TYPE_BEZIER: {
BezierTrack *bt = static_cast<BezierTrack *>(t);
ERR_FAIL_INDEX(p_key_idx, bt->values.size());
TKey<BezierKey> key = bt->values[p_key_idx];
key.time = p_time;
bt->values.remove_at(p_key_idx);
_insert(p_time, bt->values, key);
return;
}
case TYPE_AUDIO: {
AudioTrack *at = static_cast<AudioTrack *>(t);
ERR_FAIL_INDEX(p_key_idx, at->values.size());
TKey<AudioKey> key = at->values[p_key_idx];
key.time = p_time;
at->values.remove_at(p_key_idx);
_insert(p_time, at->values, key);
return;
}
case TYPE_ANIMATION: {
AnimationTrack *at = static_cast<AnimationTrack *>(t);
ERR_FAIL_INDEX(p_key_idx, at->values.size());
TKey<StringName> key = at->values[p_key_idx];
key.time = p_time;
at->values.remove_at(p_key_idx);
_insert(p_time, at->values, key);
return;
}
}
ERR_FAIL();
}
real_t Animation::track_get_key_transition(int p_track, int p_key_idx) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), -1);
Track *t = tracks[p_track];
switch (t->type) {
case TYPE_POSITION_3D: {
PositionTrack *tt = static_cast<PositionTrack *>(t);
if (tt->compressed_track >= 0) {
return 1.0;
}
ERR_FAIL_INDEX_V(p_key_idx, tt->positions.size(), -1);
return tt->positions[p_key_idx].transition;
} break;
case TYPE_ROTATION_3D: {
RotationTrack *rt = static_cast<RotationTrack *>(t);
if (rt->compressed_track >= 0) {
return 1.0;
}
ERR_FAIL_INDEX_V(p_key_idx, rt->rotations.size(), -1);
return rt->rotations[p_key_idx].transition;
} break;
case TYPE_SCALE_3D: {
ScaleTrack *st = static_cast<ScaleTrack *>(t);
if (st->compressed_track >= 0) {
return 1.0;
}
ERR_FAIL_INDEX_V(p_key_idx, st->scales.size(), -1);
return st->scales[p_key_idx].transition;
} break;
case TYPE_BLEND_SHAPE: {
BlendShapeTrack *bst = static_cast<BlendShapeTrack *>(t);
if (bst->compressed_track >= 0) {
return 1.0;
}
ERR_FAIL_INDEX_V(p_key_idx, bst->blend_shapes.size(), -1);
return bst->blend_shapes[p_key_idx].transition;
} break;
case TYPE_VALUE: {
ValueTrack *vt = static_cast<ValueTrack *>(t);
ERR_FAIL_INDEX_V(p_key_idx, vt->values.size(), -1);
return vt->values[p_key_idx].transition;
} break;
case TYPE_METHOD: {
MethodTrack *mt = static_cast<MethodTrack *>(t);
ERR_FAIL_INDEX_V(p_key_idx, mt->methods.size(), -1);
return mt->methods[p_key_idx].transition;
} break;
case TYPE_BEZIER: {
return 1; //bezier does not really use transitions
} break;
case TYPE_AUDIO: {
return 1; //audio does not really use transitions
} break;
case TYPE_ANIMATION: {
return 1; //animation does not really use transitions
} break;
}
ERR_FAIL_V(0);
}
bool Animation::track_is_compressed(int p_track) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), false);
Track *t = tracks[p_track];
switch (t->type) {
case TYPE_POSITION_3D: {
PositionTrack *tt = static_cast<PositionTrack *>(t);
return tt->compressed_track >= 0;
} break;
case TYPE_ROTATION_3D: {
RotationTrack *rt = static_cast<RotationTrack *>(t);
return rt->compressed_track >= 0;
} break;
case TYPE_SCALE_3D: {
ScaleTrack *st = static_cast<ScaleTrack *>(t);
return st->compressed_track >= 0;
} break;
case TYPE_BLEND_SHAPE: {
BlendShapeTrack *bst = static_cast<BlendShapeTrack *>(t);
return bst->compressed_track >= 0;
} break;
default: {
return false; // Animation does not really use transitions.
} break;
}
}
void Animation::track_set_key_value(int p_track, int p_key_idx, const Variant &p_value) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t = tracks[p_track];
switch (t->type) {
case TYPE_POSITION_3D: {
ERR_FAIL_COND((p_value.get_type() != Variant::VECTOR3) && (p_value.get_type() != Variant::VECTOR3I));
PositionTrack *tt = static_cast<PositionTrack *>(t);
ERR_FAIL_COND(tt->compressed_track >= 0);
ERR_FAIL_INDEX(p_key_idx, tt->positions.size());
tt->positions.write[p_key_idx].value = p_value;
} break;
case TYPE_ROTATION_3D: {
ERR_FAIL_COND((p_value.get_type() != Variant::QUATERNION) && (p_value.get_type() != Variant::BASIS));
RotationTrack *rt = static_cast<RotationTrack *>(t);
ERR_FAIL_COND(rt->compressed_track >= 0);
ERR_FAIL_INDEX(p_key_idx, rt->rotations.size());
rt->rotations.write[p_key_idx].value = p_value;
} break;
case TYPE_SCALE_3D: {
ERR_FAIL_COND((p_value.get_type() != Variant::VECTOR3) && (p_value.get_type() != Variant::VECTOR3I));
ScaleTrack *st = static_cast<ScaleTrack *>(t);
ERR_FAIL_COND(st->compressed_track >= 0);
ERR_FAIL_INDEX(p_key_idx, st->scales.size());
st->scales.write[p_key_idx].value = p_value;
} break;
case TYPE_BLEND_SHAPE: {
ERR_FAIL_COND((p_value.get_type() != Variant::FLOAT) && (p_value.get_type() != Variant::INT));
BlendShapeTrack *bst = static_cast<BlendShapeTrack *>(t);
ERR_FAIL_COND(bst->compressed_track >= 0);
ERR_FAIL_INDEX(p_key_idx, bst->blend_shapes.size());
bst->blend_shapes.write[p_key_idx].value = p_value;
} break;
case TYPE_VALUE: {
ValueTrack *vt = static_cast<ValueTrack *>(t);
ERR_FAIL_INDEX(p_key_idx, vt->values.size());
vt->values.write[p_key_idx].value = p_value;
} break;
case TYPE_METHOD: {
MethodTrack *mt = static_cast<MethodTrack *>(t);
ERR_FAIL_INDEX(p_key_idx, mt->methods.size());
Dictionary d = p_value;
if (d.has("method")) {
mt->methods.write[p_key_idx].method = d["method"];
}
if (d.has("args")) {
mt->methods.write[p_key_idx].params = d["args"];
}
} break;
case TYPE_BEZIER: {
BezierTrack *bt = static_cast<BezierTrack *>(t);
ERR_FAIL_INDEX(p_key_idx, bt->values.size());
Array arr = p_value;
ERR_FAIL_COND(arr.size() != 5);
bt->values.write[p_key_idx].value.value = arr[0];
bt->values.write[p_key_idx].value.in_handle.x = arr[1];
bt->values.write[p_key_idx].value.in_handle.y = arr[2];
bt->values.write[p_key_idx].value.out_handle.x = arr[3];
bt->values.write[p_key_idx].value.out_handle.y = arr[4];
} break;
case TYPE_AUDIO: {
AudioTrack *at = static_cast<AudioTrack *>(t);
ERR_FAIL_INDEX(p_key_idx, at->values.size());
Dictionary k = p_value;
ERR_FAIL_COND(!k.has("start_offset"));
ERR_FAIL_COND(!k.has("end_offset"));
ERR_FAIL_COND(!k.has("stream"));
at->values.write[p_key_idx].value.start_offset = k["start_offset"];
at->values.write[p_key_idx].value.end_offset = k["end_offset"];
at->values.write[p_key_idx].value.stream = k["stream"];
} break;
case TYPE_ANIMATION: {
AnimationTrack *at = static_cast<AnimationTrack *>(t);
ERR_FAIL_INDEX(p_key_idx, at->values.size());
at->values.write[p_key_idx].value = p_value;
} break;
}
emit_changed();
}
void Animation::track_set_key_transition(int p_track, int p_key_idx, real_t p_transition) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t = tracks[p_track];
switch (t->type) {
case TYPE_POSITION_3D: {
PositionTrack *tt = static_cast<PositionTrack *>(t);
ERR_FAIL_COND(tt->compressed_track >= 0);
ERR_FAIL_INDEX(p_key_idx, tt->positions.size());
tt->positions.write[p_key_idx].transition = p_transition;
} break;
case TYPE_ROTATION_3D: {
RotationTrack *rt = static_cast<RotationTrack *>(t);
ERR_FAIL_COND(rt->compressed_track >= 0);
ERR_FAIL_INDEX(p_key_idx, rt->rotations.size());
rt->rotations.write[p_key_idx].transition = p_transition;
} break;
case TYPE_SCALE_3D: {
ScaleTrack *st = static_cast<ScaleTrack *>(t);
ERR_FAIL_COND(st->compressed_track >= 0);
ERR_FAIL_INDEX(p_key_idx, st->scales.size());
st->scales.write[p_key_idx].transition = p_transition;
} break;
case TYPE_BLEND_SHAPE: {
BlendShapeTrack *bst = static_cast<BlendShapeTrack *>(t);
ERR_FAIL_COND(bst->compressed_track >= 0);
ERR_FAIL_INDEX(p_key_idx, bst->blend_shapes.size());
bst->blend_shapes.write[p_key_idx].transition = p_transition;
} break;
case TYPE_VALUE: {
ValueTrack *vt = static_cast<ValueTrack *>(t);
ERR_FAIL_INDEX(p_key_idx, vt->values.size());
vt->values.write[p_key_idx].transition = p_transition;
} break;
case TYPE_METHOD: {
MethodTrack *mt = static_cast<MethodTrack *>(t);
ERR_FAIL_INDEX(p_key_idx, mt->methods.size());
mt->methods.write[p_key_idx].transition = p_transition;
} break;
case TYPE_BEZIER:
case TYPE_AUDIO:
case TYPE_ANIMATION: {
// they don't use transition
} break;
}
emit_changed();
}
template <typename K>
int Animation::_find(const Vector<K> &p_keys, double p_time, bool p_backward, bool p_limit) const {
int len = p_keys.size();
if (len == 0) {
return -2;
}
int low = 0;
int high = len - 1;
int middle = 0;
#ifdef DEBUG_ENABLED
if (low > high) {
ERR_PRINT("low > high, this may be a bug.");
}
#endif
const K *keys = &p_keys[0];
while (low <= high) {
middle = (low + high) / 2;
if (Math::is_equal_approx(p_time, (double)keys[middle].time)) { //match
return middle;
} else if (p_time < keys[middle].time) {
high = middle - 1; //search low end of array
} else {
low = middle + 1; //search high end of array
}
}
if (!p_backward) {
if (keys[middle].time > p_time) {
middle--;
}
} else {
if (keys[middle].time < p_time) {
middle++;
}
}
if (p_limit) {
double diff = length - keys[middle].time;
if ((signbit(keys[middle].time) && !Math::is_zero_approx(keys[middle].time)) || (signbit(diff) && !Math::is_zero_approx(diff))) {
ERR_PRINT_ONCE_ED("Found the key outside the animation range. Consider using the clean-up option in AnimationTrackEditor to fix it.");
return -1;
}
}
return middle;
}
// Linear interpolation for anytype.
Vector3 Animation::_interpolate(const Vector3 &p_a, const Vector3 &p_b, real_t p_c) const {
return p_a.lerp(p_b, p_c);
}
Quaternion Animation::_interpolate(const Quaternion &p_a, const Quaternion &p_b, real_t p_c) const {
return p_a.slerp(p_b, p_c);
}
Variant Animation::_interpolate(const Variant &p_a, const Variant &p_b, real_t p_c) const {
return interpolate_variant(p_a, p_b, p_c);
}
real_t Animation::_interpolate(const real_t &p_a, const real_t &p_b, real_t p_c) const {
return Math::lerp(p_a, p_b, p_c);
}
Variant Animation::_interpolate_angle(const Variant &p_a, const Variant &p_b, real_t p_c) const {
Variant::Type type_a = p_a.get_type();
Variant::Type type_b = p_b.get_type();
uint32_t vformat = 1 << type_a;
vformat |= 1 << type_b;
if (vformat == ((1 << Variant::INT) | (1 << Variant::FLOAT)) || vformat == (1 << Variant::FLOAT)) {
real_t a = p_a;
real_t b = p_b;
return Math::fposmod((float)Math::lerp_angle(a, b, p_c), (float)Math_TAU);
}
return _interpolate(p_a, p_b, p_c);
}
// Cubic interpolation for anytype.
Vector3 Animation::_cubic_interpolate_in_time(const Vector3 &p_pre_a, const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_post_b, real_t p_c, real_t p_pre_a_t, real_t p_b_t, real_t p_post_b_t) const {
return p_a.cubic_interpolate_in_time(p_b, p_pre_a, p_post_b, p_c, p_b_t, p_pre_a_t, p_post_b_t);
}
Quaternion Animation::_cubic_interpolate_in_time(const Quaternion &p_pre_a, const Quaternion &p_a, const Quaternion &p_b, const Quaternion &p_post_b, real_t p_c, real_t p_pre_a_t, real_t p_b_t, real_t p_post_b_t) const {
return p_a.spherical_cubic_interpolate_in_time(p_b, p_pre_a, p_post_b, p_c, p_b_t, p_pre_a_t, p_post_b_t);
}
Variant Animation::_cubic_interpolate_in_time(const Variant &p_pre_a, const Variant &p_a, const Variant &p_b, const Variant &p_post_b, real_t p_c, real_t p_pre_a_t, real_t p_b_t, real_t p_post_b_t) const {
return cubic_interpolate_in_time_variant(p_pre_a, p_a, p_b, p_post_b, p_c, p_pre_a_t, p_b_t, p_post_b_t);
}
real_t Animation::_cubic_interpolate_in_time(const real_t &p_pre_a, const real_t &p_a, const real_t &p_b, const real_t &p_post_b, real_t p_c, real_t p_pre_a_t, real_t p_b_t, real_t p_post_b_t) const {
return Math::cubic_interpolate_in_time(p_a, p_b, p_pre_a, p_post_b, p_c, p_b_t, p_pre_a_t, p_post_b_t);
}
Variant Animation::_cubic_interpolate_angle_in_time(const Variant &p_pre_a, const Variant &p_a, const Variant &p_b, const Variant &p_post_b, real_t p_c, real_t p_pre_a_t, real_t p_b_t, real_t p_post_b_t) const {
Variant::Type type_a = p_a.get_type();
Variant::Type type_b = p_b.get_type();
Variant::Type type_pa = p_pre_a.get_type();
Variant::Type type_pb = p_post_b.get_type();
uint32_t vformat = 1 << type_a;
vformat |= 1 << type_b;
vformat |= 1 << type_pa;
vformat |= 1 << type_pb;
if (vformat == ((1 << Variant::INT) | (1 << Variant::FLOAT)) || vformat == (1 << Variant::FLOAT)) {
real_t a = p_a;
real_t b = p_b;
real_t pa = p_pre_a;
real_t pb = p_post_b;
return Math::fposmod((float)Math::cubic_interpolate_angle_in_time(a, b, pa, pb, p_c, p_b_t, p_pre_a_t, p_post_b_t), (float)Math_TAU);
}
return _cubic_interpolate_in_time(p_pre_a, p_a, p_b, p_post_b, p_c, p_pre_a_t, p_b_t, p_post_b_t);
}
template <typename T>
T Animation::_interpolate(const Vector<TKey<T>> &p_keys, double p_time, InterpolationType p_interp, bool p_loop_wrap, bool *p_ok, bool p_backward) const {
int len = _find(p_keys, length) + 1; // try to find last key (there may be more past the end)
if (len <= 0) {
// (-1 or -2 returned originally) (plus one above)
// meaning no keys, or only key time is larger than length
if (p_ok) {
*p_ok = false;
}
return T();
} else if (len == 1) { // one key found (0+1), return it
if (p_ok) {
*p_ok = true;
}
return p_keys[0].value;
}
int idx = _find(p_keys, p_time, p_backward);
ERR_FAIL_COND_V(idx == -2, T());
int maxi = len - 1;
bool is_start_edge = p_backward ? idx >= len : idx == -1;
bool is_end_edge = p_backward ? idx == 0 : idx >= maxi;
real_t c = 0.0;
// Prepare for all cases of interpolation.
real_t delta = 0.0;
real_t from = 0.0;
int pre = -1;
int next = -1;
int post = -1;
real_t pre_t = 0.0;
real_t to_t = 0.0;
real_t post_t = 0.0;
bool use_cubic = p_interp == INTERPOLATION_CUBIC || p_interp == INTERPOLATION_CUBIC_ANGLE;
if (!p_loop_wrap || loop_mode == LOOP_NONE) {
if (is_start_edge) {
idx = p_backward ? maxi : 0;
}
next = CLAMP(idx + (p_backward ? -1 : 1), 0, maxi);
if (use_cubic) {
pre = CLAMP(idx + (p_backward ? 1 : -1), 0, maxi);
post = CLAMP(idx + (p_backward ? -2 : 2), 0, maxi);
}
} else if (loop_mode == LOOP_LINEAR) {
if (is_start_edge) {
idx = p_backward ? 0 : maxi;
}
next = Math::posmod(idx + (p_backward ? -1 : 1), len);
if (use_cubic) {
pre = Math::posmod(idx + (p_backward ? 1 : -1), len);
post = Math::posmod(idx + (p_backward ? -2 : 2), len);
}
if (is_start_edge) {
if (!p_backward) {
real_t endtime = (length - p_keys[idx].time);
if (endtime < 0) { // may be keys past the end
endtime = 0;
}
delta = endtime + p_keys[next].time;
from = endtime + p_time;
} else {
real_t endtime = p_keys[idx].time;
if (endtime > length) { // may be keys past the end
endtime = length;
}
delta = endtime + length - p_keys[next].time;
from = endtime + length - p_time;
}
} else if (is_end_edge) {
if (!p_backward) {
delta = (length - p_keys[idx].time) + p_keys[next].time;
from = p_time - p_keys[idx].time;
} else {
delta = p_keys[idx].time + (length - p_keys[next].time);
from = (length - p_time) - (length - p_keys[idx].time);
}
}
} else {
if (is_start_edge) {
idx = p_backward ? len : -1;
}
next = (int)Math::round(Math::pingpong((float)(idx + (p_backward ? -1 : 1)) + 0.5f, (float)len) - 0.5f);
if (use_cubic) {
pre = (int)Math::round(Math::pingpong((float)(idx + (p_backward ? 1 : -1)) + 0.5f, (float)len) - 0.5f);
post = (int)Math::round(Math::pingpong((float)(idx + (p_backward ? -2 : 2)) + 0.5f, (float)len) - 0.5f);
}
idx = (int)Math::round(Math::pingpong((float)idx + 0.5f, (float)len) - 0.5f);
if (is_start_edge) {
if (!p_backward) {
real_t endtime = p_keys[idx].time;
if (endtime < 0) { // may be keys past the end
endtime = 0;
}
delta = endtime + p_keys[next].time;
from = endtime + p_time;
} else {
real_t endtime = length - p_keys[idx].time;
if (endtime > length) { // may be keys past the end
endtime = length;
}
delta = endtime + length - p_keys[next].time;
from = endtime + length - p_time;
}
} else if (is_end_edge) {
if (!p_backward) {
delta = length * 2.0 - p_keys[idx].time - p_keys[next].time;
from = p_time - p_keys[idx].time;
} else {
delta = p_keys[idx].time + p_keys[next].time;
from = (length - p_time) - (length - p_keys[idx].time);
}
}
}
if (!is_start_edge && !is_end_edge) {
if (!p_backward) {
delta = p_keys[next].time - p_keys[idx].time;
from = p_time - p_keys[idx].time;
} else {
delta = (length - p_keys[next].time) - (length - p_keys[idx].time);
from = (length - p_time) - (length - p_keys[idx].time);
}
}
if (Math::is_zero_approx(delta)) {
c = 0;
} else {
c = from / delta;
}
if (p_ok) {
*p_ok = true;
}
real_t tr = p_keys[idx].transition;
if (tr == 0) {
// Don't interpolate if not needed.
return p_keys[idx].value;
}
if (tr != 1.0) {
c = Math::ease(c, tr);
}
switch (p_interp) {
case INTERPOLATION_NEAREST: {
return p_keys[idx].value;
} break;
case INTERPOLATION_LINEAR: {
return _interpolate(p_keys[idx].value, p_keys[next].value, c);
} break;
case INTERPOLATION_LINEAR_ANGLE: {
return _interpolate_angle(p_keys[idx].value, p_keys[next].value, c);
} break;
case INTERPOLATION_CUBIC:
case INTERPOLATION_CUBIC_ANGLE: {
if (!p_loop_wrap || loop_mode == LOOP_NONE) {
pre_t = p_keys[pre].time - p_keys[idx].time;
to_t = p_keys[next].time - p_keys[idx].time;
post_t = p_keys[post].time - p_keys[idx].time;
} else if (loop_mode == LOOP_LINEAR) {
pre_t = pre > idx ? -length + p_keys[pre].time - p_keys[idx].time : p_keys[pre].time - p_keys[idx].time;
to_t = next < idx ? length + p_keys[next].time - p_keys[idx].time : p_keys[next].time - p_keys[idx].time;
post_t = next < idx || post <= idx ? length + p_keys[post].time - p_keys[idx].time : p_keys[post].time - p_keys[idx].time;
} else {
pre_t = p_keys[pre].time - p_keys[idx].time;
to_t = p_keys[next].time - p_keys[idx].time;
post_t = p_keys[post].time - p_keys[idx].time;
if ((pre > idx && idx == next && post < next) || (pre < idx && idx == next && post > next)) {
pre_t = p_keys[idx].time - p_keys[pre].time;
} else if (pre == idx) {
pre_t = idx < next ? -p_keys[idx].time * 2.0 : (length - p_keys[idx].time) * 2.0;
}
if (idx == next) {
to_t = pre < idx ? (length - p_keys[idx].time) * 2.0 : -p_keys[idx].time * 2.0;
post_t = p_keys[next].time - p_keys[post].time + to_t;
} else if (next == post) {
post_t = idx < next ? (length - p_keys[next].time) * 2.0 + to_t : -p_keys[next].time * 2.0 + to_t;
}
}
if (p_interp == INTERPOLATION_CUBIC_ANGLE) {
return _cubic_interpolate_angle_in_time(
p_keys[pre].value, p_keys[idx].value, p_keys[next].value, p_keys[post].value, c,
pre_t, to_t, post_t);
}
return _cubic_interpolate_in_time(
p_keys[pre].value, p_keys[idx].value, p_keys[next].value, p_keys[post].value, c,
pre_t, to_t, post_t);
} break;
default:
return p_keys[idx].value;
}
// do a barrel roll
}
Variant Animation::value_track_interpolate(int p_track, double p_time, bool p_backward) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), 0);
Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_VALUE, Variant());
ValueTrack *vt = static_cast<ValueTrack *>(t);
bool ok = false;
Variant res = _interpolate(vt->values, p_time, vt->update_mode == UPDATE_DISCRETE ? INTERPOLATION_NEAREST : vt->interpolation, vt->loop_wrap, &ok, p_backward);
if (ok) {
return res;
}
return Variant();
}
void Animation::value_track_set_update_mode(int p_track, UpdateMode p_mode) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t = tracks[p_track];
ERR_FAIL_COND(t->type != TYPE_VALUE);
ERR_FAIL_INDEX((int)p_mode, 3);
ValueTrack *vt = static_cast<ValueTrack *>(t);
vt->update_mode = p_mode;
_check_capture_included();
emit_changed();
}
Animation::UpdateMode Animation::value_track_get_update_mode(int p_track) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), UPDATE_CONTINUOUS);
Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_VALUE, UPDATE_CONTINUOUS);
ValueTrack *vt = static_cast<ValueTrack *>(t);
return vt->update_mode;
}
template <typename T>
void Animation::_track_get_key_indices_in_range(const Vector<T> &p_array, double from_time, double to_time, List<int> *p_indices, bool p_is_backward) const {
int len = p_array.size();
if (len == 0) {
return;
}
int from = 0;
int to = len - 1;
if (!p_is_backward) {
while (p_array[from].time < from_time || Math::is_equal_approx(p_array[from].time, from_time)) {
from++;
if (to < from) {
return;
}
}
while (p_array[to].time > to_time && !Math::is_equal_approx(p_array[to].time, to_time)) {
to--;
if (to < from) {
return;
}
}
} else {
while (p_array[from].time < from_time && !Math::is_equal_approx(p_array[from].time, from_time)) {
from++;
if (to < from) {
return;
}
}
while (p_array[to].time > to_time || Math::is_equal_approx(p_array[to].time, to_time)) {
to--;
if (to < from) {
return;
}
}
}
if (from == to) {
p_indices->push_back(from);
return;
}
if (!p_is_backward) {
for (int i = from; i <= to; i++) {
p_indices->push_back(i);
}
} else {
for (int i = to; i >= from; i--) {
p_indices->push_back(i);
}
}
}
void Animation::track_get_key_indices_in_range(int p_track, double p_time, double p_delta, List<int> *p_indices, Animation::LoopedFlag p_looped_flag) const {
ERR_FAIL_INDEX(p_track, tracks.size());
if (p_delta == 0) {
return; // Prevent to get key continuously.
}
const Track *t = tracks[p_track];
double from_time = p_time - p_delta;
double to_time = p_time;
bool is_backward = false;
if (from_time > to_time) {
is_backward = true;
SWAP(from_time, to_time);
}
switch (loop_mode) {
case LOOP_NONE: {
if (from_time < 0) {
from_time = 0;
}
if (from_time > length) {
from_time = length;
}
if (to_time < 0) {
to_time = 0;
}
if (to_time > length) {
to_time = length;
}
} break;
case LOOP_LINEAR: {
if (from_time > length || from_time < 0) {
from_time = Math::fposmod(from_time, length);
}
if (to_time > length || to_time < 0) {
to_time = Math::fposmod(to_time, length);
}
if (from_time > to_time) {
// Handle loop by splitting.
double anim_end = length + CMP_EPSILON;
double anim_start = -CMP_EPSILON;
switch (t->type) {
case TYPE_POSITION_3D: {
const PositionTrack *tt = static_cast<const PositionTrack *>(t);
if (tt->compressed_track >= 0) {
_get_compressed_key_indices_in_range<3>(tt->compressed_track, from_time, length, p_indices);
_get_compressed_key_indices_in_range<3>(tt->compressed_track, 0, to_time, p_indices);
} else {
if (!is_backward) {
_track_get_key_indices_in_range(tt->positions, from_time, anim_end, p_indices, is_backward);
_track_get_key_indices_in_range(tt->positions, anim_start, to_time, p_indices, is_backward);
} else {
_track_get_key_indices_in_range(tt->positions, anim_start, to_time, p_indices, is_backward);
_track_get_key_indices_in_range(tt->positions, from_time, anim_end, p_indices, is_backward);
}
}
} break;
case TYPE_ROTATION_3D: {
const RotationTrack *rt = static_cast<const RotationTrack *>(t);
if (rt->compressed_track >= 0) {
_get_compressed_key_indices_in_range<3>(rt->compressed_track, from_time, length, p_indices);
_get_compressed_key_indices_in_range<3>(rt->compressed_track, 0, to_time, p_indices);
} else {
if (!is_backward) {
_track_get_key_indices_in_range(rt->rotations, from_time, anim_end, p_indices, is_backward);
_track_get_key_indices_in_range(rt->rotations, anim_start, to_time, p_indices, is_backward);
} else {
_track_get_key_indices_in_range(rt->rotations, anim_start, to_time, p_indices, is_backward);
_track_get_key_indices_in_range(rt->rotations, from_time, anim_end, p_indices, is_backward);
}
}
} break;
case TYPE_SCALE_3D: {
const ScaleTrack *st = static_cast<const ScaleTrack *>(t);
if (st->compressed_track >= 0) {
_get_compressed_key_indices_in_range<3>(st->compressed_track, from_time, length, p_indices);
_get_compressed_key_indices_in_range<3>(st->compressed_track, 0, to_time, p_indices);
} else {
if (!is_backward) {
_track_get_key_indices_in_range(st->scales, from_time, anim_end, p_indices, is_backward);
_track_get_key_indices_in_range(st->scales, anim_start, to_time, p_indices, is_backward);
} else {
_track_get_key_indices_in_range(st->scales, anim_start, to_time, p_indices, is_backward);
_track_get_key_indices_in_range(st->scales, from_time, anim_end, p_indices, is_backward);
}
}
} break;
case TYPE_BLEND_SHAPE: {
const BlendShapeTrack *bst = static_cast<const BlendShapeTrack *>(t);
if (bst->compressed_track >= 0) {
_get_compressed_key_indices_in_range<1>(bst->compressed_track, from_time, length, p_indices);
_get_compressed_key_indices_in_range<1>(bst->compressed_track, 0, to_time, p_indices);
} else {
if (!is_backward) {
_track_get_key_indices_in_range(bst->blend_shapes, from_time, anim_end, p_indices, is_backward);
_track_get_key_indices_in_range(bst->blend_shapes, anim_start, to_time, p_indices, is_backward);
} else {
_track_get_key_indices_in_range(bst->blend_shapes, anim_start, to_time, p_indices, is_backward);
_track_get_key_indices_in_range(bst->blend_shapes, from_time, anim_end, p_indices, is_backward);
}
}
} break;
case TYPE_VALUE: {
const ValueTrack *vt = static_cast<const ValueTrack *>(t);
if (!is_backward) {
_track_get_key_indices_in_range(vt->values, from_time, anim_end, p_indices, is_backward);
_track_get_key_indices_in_range(vt->values, anim_start, to_time, p_indices, is_backward);
} else {
_track_get_key_indices_in_range(vt->values, anim_start, to_time, p_indices, is_backward);
_track_get_key_indices_in_range(vt->values, from_time, anim_end, p_indices, is_backward);
}
} break;
case TYPE_METHOD: {
const MethodTrack *mt = static_cast<const MethodTrack *>(t);
if (!is_backward) {
_track_get_key_indices_in_range(mt->methods, from_time, anim_end, p_indices, is_backward);
_track_get_key_indices_in_range(mt->methods, anim_start, to_time, p_indices, is_backward);
} else {
_track_get_key_indices_in_range(mt->methods, anim_start, to_time, p_indices, is_backward);
_track_get_key_indices_in_range(mt->methods, from_time, anim_end, p_indices, is_backward);
}
} break;
case TYPE_BEZIER: {
const BezierTrack *bz = static_cast<const BezierTrack *>(t);
if (!is_backward) {
_track_get_key_indices_in_range(bz->values, from_time, anim_end, p_indices, is_backward);
_track_get_key_indices_in_range(bz->values, anim_start, to_time, p_indices, is_backward);
} else {
_track_get_key_indices_in_range(bz->values, anim_start, to_time, p_indices, is_backward);
_track_get_key_indices_in_range(bz->values, from_time, anim_end, p_indices, is_backward);
}
} break;
case TYPE_AUDIO: {
const AudioTrack *ad = static_cast<const AudioTrack *>(t);
if (!is_backward) {
_track_get_key_indices_in_range(ad->values, from_time, anim_end, p_indices, is_backward);
_track_get_key_indices_in_range(ad->values, anim_start, to_time, p_indices, is_backward);
} else {
_track_get_key_indices_in_range(ad->values, anim_start, to_time, p_indices, is_backward);
_track_get_key_indices_in_range(ad->values, from_time, anim_end, p_indices, is_backward);
}
} break;
case TYPE_ANIMATION: {
const AnimationTrack *an = static_cast<const AnimationTrack *>(t);
if (!is_backward) {
_track_get_key_indices_in_range(an->values, from_time, anim_end, p_indices, is_backward);
_track_get_key_indices_in_range(an->values, anim_start, to_time, p_indices, is_backward);
} else {
_track_get_key_indices_in_range(an->values, anim_start, to_time, p_indices, is_backward);
_track_get_key_indices_in_range(an->values, from_time, anim_end, p_indices, is_backward);
}
} break;
}
return;
}
// Not from_time > to_time but most recent of looping...
if (p_looped_flag != Animation::LOOPED_FLAG_NONE) {
if (!is_backward && Math::is_equal_approx(from_time, 0)) {
int edge = track_find_key(p_track, 0, FIND_MODE_EXACT);
if (edge >= 0) {
p_indices->push_back(edge);
}
} else if (is_backward && Math::is_equal_approx(to_time, length)) {
int edge = track_find_key(p_track, length, FIND_MODE_EXACT);
if (edge >= 0) {
p_indices->push_back(edge);
}
}
}
} break;
case LOOP_PINGPONG: {
if (from_time > length || from_time < 0) {
from_time = Math::pingpong(from_time, length);
}
if (to_time > length || to_time < 0) {
to_time = Math::pingpong(to_time, length);
}
if (p_looped_flag == Animation::LOOPED_FLAG_START) {
// Handle loop by splitting.
switch (t->type) {
case TYPE_POSITION_3D: {
const PositionTrack *tt = static_cast<const PositionTrack *>(t);
if (tt->compressed_track >= 0) {
_get_compressed_key_indices_in_range<3>(tt->compressed_track, 0, from_time, p_indices);
_get_compressed_key_indices_in_range<3>(tt->compressed_track, 0, to_time, p_indices);
} else {
_track_get_key_indices_in_range(tt->positions, 0, from_time, p_indices, true);
_track_get_key_indices_in_range(tt->positions, 0, to_time, p_indices, false);
}
} break;
case TYPE_ROTATION_3D: {
const RotationTrack *rt = static_cast<const RotationTrack *>(t);
if (rt->compressed_track >= 0) {
_get_compressed_key_indices_in_range<3>(rt->compressed_track, 0, from_time, p_indices);
_get_compressed_key_indices_in_range<3>(rt->compressed_track, 0, to_time, p_indices);
} else {
_track_get_key_indices_in_range(rt->rotations, 0, from_time, p_indices, true);
_track_get_key_indices_in_range(rt->rotations, 0, to_time, p_indices, false);
}
} break;
case TYPE_SCALE_3D: {
const ScaleTrack *st = static_cast<const ScaleTrack *>(t);
if (st->compressed_track >= 0) {
_get_compressed_key_indices_in_range<3>(st->compressed_track, 0, from_time, p_indices);
_get_compressed_key_indices_in_range<3>(st->compressed_track, 0, to_time, p_indices);
} else {
_track_get_key_indices_in_range(st->scales, 0, from_time, p_indices, true);
_track_get_key_indices_in_range(st->scales, 0, to_time, p_indices, false);
}
} break;
case TYPE_BLEND_SHAPE: {
const BlendShapeTrack *bst = static_cast<const BlendShapeTrack *>(t);
if (bst->compressed_track >= 0) {
_get_compressed_key_indices_in_range<1>(bst->compressed_track, 0, from_time, p_indices);
_get_compressed_key_indices_in_range<1>(bst->compressed_track, 0, to_time, p_indices);
} else {
_track_get_key_indices_in_range(bst->blend_shapes, 0, from_time, p_indices, true);
_track_get_key_indices_in_range(bst->blend_shapes, 0, to_time, p_indices, false);
}
} break;
case TYPE_VALUE: {
const ValueTrack *vt = static_cast<const ValueTrack *>(t);
_track_get_key_indices_in_range(vt->values, 0, from_time, p_indices, true);
_track_get_key_indices_in_range(vt->values, 0, to_time, p_indices, false);
} break;
case TYPE_METHOD: {
const MethodTrack *mt = static_cast<const MethodTrack *>(t);
_track_get_key_indices_in_range(mt->methods, 0, from_time, p_indices, true);
_track_get_key_indices_in_range(mt->methods, 0, to_time, p_indices, false);
} break;
case TYPE_BEZIER: {
const BezierTrack *bz = static_cast<const BezierTrack *>(t);
_track_get_key_indices_in_range(bz->values, 0, from_time, p_indices, true);
_track_get_key_indices_in_range(bz->values, 0, to_time, p_indices, false);
} break;
case TYPE_AUDIO: {
const AudioTrack *ad = static_cast<const AudioTrack *>(t);
_track_get_key_indices_in_range(ad->values, 0, from_time, p_indices, true);
_track_get_key_indices_in_range(ad->values, 0, to_time, p_indices, false);
} break;
case TYPE_ANIMATION: {
const AnimationTrack *an = static_cast<const AnimationTrack *>(t);
_track_get_key_indices_in_range(an->values, 0, from_time, p_indices, true);
_track_get_key_indices_in_range(an->values, 0, to_time, p_indices, false);
} break;
}
return;
}
if (p_looped_flag == Animation::LOOPED_FLAG_END) {
// Handle loop by splitting.
switch (t->type) {
case TYPE_POSITION_3D: {
const PositionTrack *tt = static_cast<const PositionTrack *>(t);
if (tt->compressed_track >= 0) {
_get_compressed_key_indices_in_range<3>(tt->compressed_track, from_time, length, p_indices);
_get_compressed_key_indices_in_range<3>(tt->compressed_track, to_time, length, p_indices);
} else {
_track_get_key_indices_in_range(tt->positions, from_time, length, p_indices, false);
_track_get_key_indices_in_range(tt->positions, to_time, length, p_indices, true);
}
} break;
case TYPE_ROTATION_3D: {
const RotationTrack *rt = static_cast<const RotationTrack *>(t);
if (rt->compressed_track >= 0) {
_get_compressed_key_indices_in_range<3>(rt->compressed_track, from_time, length, p_indices);
_get_compressed_key_indices_in_range<3>(rt->compressed_track, to_time, length, p_indices);
} else {
_track_get_key_indices_in_range(rt->rotations, from_time, length, p_indices, false);
_track_get_key_indices_in_range(rt->rotations, to_time, length, p_indices, true);
}
} break;
case TYPE_SCALE_3D: {
const ScaleTrack *st = static_cast<const ScaleTrack *>(t);
if (st->compressed_track >= 0) {
_get_compressed_key_indices_in_range<3>(st->compressed_track, from_time, length, p_indices);
_get_compressed_key_indices_in_range<3>(st->compressed_track, to_time, length, p_indices);
} else {
_track_get_key_indices_in_range(st->scales, from_time, length, p_indices, false);
_track_get_key_indices_in_range(st->scales, to_time, length, p_indices, true);
}
} break;
case TYPE_BLEND_SHAPE: {
const BlendShapeTrack *bst = static_cast<const BlendShapeTrack *>(t);
if (bst->compressed_track >= 0) {
_get_compressed_key_indices_in_range<1>(bst->compressed_track, from_time, length, p_indices);
_get_compressed_key_indices_in_range<1>(bst->compressed_track, to_time, length, p_indices);
} else {
_track_get_key_indices_in_range(bst->blend_shapes, from_time, length, p_indices, false);
_track_get_key_indices_in_range(bst->blend_shapes, to_time, length, p_indices, true);
}
} break;
case TYPE_VALUE: {
const ValueTrack *vt = static_cast<const ValueTrack *>(t);
_track_get_key_indices_in_range(vt->values, from_time, length, p_indices, false);
_track_get_key_indices_in_range(vt->values, to_time, length, p_indices, true);
} break;
case TYPE_METHOD: {
const MethodTrack *mt = static_cast<const MethodTrack *>(t);
_track_get_key_indices_in_range(mt->methods, from_time, length, p_indices, false);
_track_get_key_indices_in_range(mt->methods, to_time, length, p_indices, true);
} break;
case TYPE_BEZIER: {
const BezierTrack *bz = static_cast<const BezierTrack *>(t);
_track_get_key_indices_in_range(bz->values, from_time, length, p_indices, false);
_track_get_key_indices_in_range(bz->values, to_time, length, p_indices, true);
} break;
case TYPE_AUDIO: {
const AudioTrack *ad = static_cast<const AudioTrack *>(t);
_track_get_key_indices_in_range(ad->values, from_time, length, p_indices, false);
_track_get_key_indices_in_range(ad->values, to_time, length, p_indices, true);
} break;
case TYPE_ANIMATION: {
const AnimationTrack *an = static_cast<const AnimationTrack *>(t);
_track_get_key_indices_in_range(an->values, from_time, length, p_indices, false);
_track_get_key_indices_in_range(an->values, to_time, length, p_indices, true);
} break;
}
return;
}
// The edge will be pingponged in the next frame and processed there, so let's ignore it now...
if (!is_backward && Math::is_equal_approx(to_time, length)) {
to_time -= CMP_EPSILON;
} else if (is_backward && Math::is_equal_approx(from_time, 0)) {
from_time += CMP_EPSILON;
}
} break;
}
switch (t->type) {
case TYPE_POSITION_3D: {
const PositionTrack *tt = static_cast<const PositionTrack *>(t);
if (tt->compressed_track >= 0) {
_get_compressed_key_indices_in_range<3>(tt->compressed_track, from_time, to_time - from_time, p_indices);
} else {
_track_get_key_indices_in_range(tt->positions, from_time, to_time, p_indices, is_backward);
}
} break;
case TYPE_ROTATION_3D: {
const RotationTrack *rt = static_cast<const RotationTrack *>(t);
if (rt->compressed_track >= 0) {
_get_compressed_key_indices_in_range<3>(rt->compressed_track, from_time, to_time - from_time, p_indices);
} else {
_track_get_key_indices_in_range(rt->rotations, from_time, to_time, p_indices, is_backward);
}
} break;
case TYPE_SCALE_3D: {
const ScaleTrack *st = static_cast<const ScaleTrack *>(t);
if (st->compressed_track >= 0) {
_get_compressed_key_indices_in_range<3>(st->compressed_track, from_time, to_time - from_time, p_indices);
} else {
_track_get_key_indices_in_range(st->scales, from_time, to_time, p_indices, is_backward);
}
} break;
case TYPE_BLEND_SHAPE: {
const BlendShapeTrack *bst = static_cast<const BlendShapeTrack *>(t);
if (bst->compressed_track >= 0) {
_get_compressed_key_indices_in_range<1>(bst->compressed_track, from_time, to_time - from_time, p_indices);
} else {
_track_get_key_indices_in_range(bst->blend_shapes, from_time, to_time, p_indices, is_backward);
}
} break;
case TYPE_VALUE: {
const ValueTrack *vt = static_cast<const ValueTrack *>(t);
_track_get_key_indices_in_range(vt->values, from_time, to_time, p_indices, is_backward);
} break;
case TYPE_METHOD: {
const MethodTrack *mt = static_cast<const MethodTrack *>(t);
_track_get_key_indices_in_range(mt->methods, from_time, to_time, p_indices, is_backward);
} break;
case TYPE_BEZIER: {
const BezierTrack *bz = static_cast<const BezierTrack *>(t);
_track_get_key_indices_in_range(bz->values, from_time, to_time, p_indices, is_backward);
} break;
case TYPE_AUDIO: {
const AudioTrack *ad = static_cast<const AudioTrack *>(t);
_track_get_key_indices_in_range(ad->values, from_time, to_time, p_indices, is_backward);
} break;
case TYPE_ANIMATION: {
const AnimationTrack *an = static_cast<const AnimationTrack *>(t);
_track_get_key_indices_in_range(an->values, from_time, to_time, p_indices, is_backward);
} break;
}
}
void Animation::add_marker(const StringName &p_name, double p_time) {
int idx = _find(marker_names, p_time);
if (idx >= 0 && idx < marker_names.size() && Math::is_equal_approx(p_time, marker_names[idx].time)) {
marker_times.erase(marker_names[idx].name);
marker_colors.erase(marker_names[idx].name);
marker_names.write[idx].name = p_name;
marker_times.insert(p_name, p_time);
marker_colors.insert(p_name, Color(1, 1, 1));
} else {
_marker_insert(p_time, marker_names, MarkerKey(p_time, p_name));
marker_times.insert(p_name, p_time);
marker_colors.insert(p_name, Color(1, 1, 1));
}
}
void Animation::remove_marker(const StringName &p_name) {
HashMap<StringName, double>::Iterator E = marker_times.find(p_name);
ERR_FAIL_COND(!E);
int idx = _find(marker_names, E->value);
bool success = idx >= 0 && idx < marker_names.size() && Math::is_equal_approx(marker_names[idx].time, E->value);
ERR_FAIL_COND(!success);
marker_names.remove_at(idx);
marker_times.remove(E);
marker_colors.erase(p_name);
}
bool Animation::has_marker(const StringName &p_name) const {
return marker_times.has(p_name);
}
StringName Animation::get_marker_at_time(double p_time) const {
int idx = _find(marker_names, p_time);
if (idx >= 0 && idx < marker_names.size() && Math::is_equal_approx(marker_names[idx].time, p_time)) {
return marker_names[idx].name;
}
return StringName();
}
StringName Animation::get_next_marker(double p_time) const {
int idx = _find(marker_names, p_time);
if (idx >= -1 && idx < marker_names.size() - 1) {
// _find ensures that the time at idx is always the closest time to p_time that is also smaller to it.
// So we add 1 to get the next marker.
return marker_names[idx + 1].name;
}
return StringName();
}
StringName Animation::get_prev_marker(double p_time) const {
int idx = _find(marker_names, p_time);
if (idx >= 0 && idx < marker_names.size()) {
return marker_names[idx].name;
}
return StringName();
}
double Animation::get_marker_time(const StringName &p_name) const {
ERR_FAIL_COND_V(!marker_times.has(p_name), -1);
return marker_times.get(p_name);
}
PackedStringArray Animation::get_marker_names() const {
PackedStringArray names;
// We iterate on marker_names so the result is sorted by time.
for (const MarkerKey &marker_name : marker_names) {
names.push_back(marker_name.name);
}
return names;
}
Color Animation::get_marker_color(const StringName &p_name) const {
ERR_FAIL_COND_V(!marker_colors.has(p_name), Color());
return marker_colors[p_name];
}
void Animation::set_marker_color(const StringName &p_name, const Color &p_color) {
marker_colors[p_name] = p_color;
}
Vector<Variant> Animation::method_track_get_params(int p_track, int p_key_idx) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), Vector<Variant>());
Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_METHOD, Vector<Variant>());
MethodTrack *pm = static_cast<MethodTrack *>(t);
ERR_FAIL_INDEX_V(p_key_idx, pm->methods.size(), Vector<Variant>());
const MethodKey &mk = pm->methods[p_key_idx];
return mk.params;
}
StringName Animation::method_track_get_name(int p_track, int p_key_idx) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), StringName());
Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_METHOD, StringName());
MethodTrack *pm = static_cast<MethodTrack *>(t);
ERR_FAIL_INDEX_V(p_key_idx, pm->methods.size(), StringName());
return pm->methods[p_key_idx].method;
}
Array Animation::make_default_bezier_key(float p_value) {
const double max_width = length / 2.0;
Array new_point;
new_point.resize(5);
new_point[0] = p_value;
new_point[1] = MAX(-0.25, -max_width);
new_point[2] = 0;
new_point[3] = MIN(0.25, max_width);
new_point[4] = 0;
return new_point;
}
int Animation::bezier_track_insert_key(int p_track, double p_time, real_t p_value, const Vector2 &p_in_handle, const Vector2 &p_out_handle) {
ERR_FAIL_INDEX_V(p_track, tracks.size(), -1);
Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_BEZIER, -1);
BezierTrack *bt = static_cast<BezierTrack *>(t);
TKey<BezierKey> k;
k.time = p_time;
k.value.value = p_value;
k.value.in_handle = p_in_handle;
if (k.value.in_handle.x > 0) {
k.value.in_handle.x = 0;
}
k.value.out_handle = p_out_handle;
if (k.value.out_handle.x < 0) {
k.value.out_handle.x = 0;
}
int key = _insert(p_time, bt->values, k);
emit_changed();
return key;
}
void Animation::bezier_track_set_key_value(int p_track, int p_index, real_t p_value) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t = tracks[p_track];
ERR_FAIL_COND(t->type != TYPE_BEZIER);
BezierTrack *bt = static_cast<BezierTrack *>(t);
ERR_FAIL_INDEX(p_index, bt->values.size());
bt->values.write[p_index].value.value = p_value;
emit_changed();
}
void Animation::bezier_track_set_key_in_handle(int p_track, int p_index, const Vector2 &p_handle, real_t p_balanced_value_time_ratio) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t = tracks[p_track];
ERR_FAIL_COND(t->type != TYPE_BEZIER);
BezierTrack *bt = static_cast<BezierTrack *>(t);
ERR_FAIL_INDEX(p_index, bt->values.size());
Vector2 in_handle = p_handle;
if (in_handle.x > 0) {
in_handle.x = 0;
}
bt->values.write[p_index].value.in_handle = in_handle;
#ifdef TOOLS_ENABLED
if (bt->values[p_index].value.handle_mode == HANDLE_MODE_LINEAR) {
bt->values.write[p_index].value.in_handle = Vector2();
bt->values.write[p_index].value.out_handle = Vector2();
} else if (bt->values[p_index].value.handle_mode == HANDLE_MODE_BALANCED) {
Transform2D xform;
xform.set_scale(Vector2(1.0, 1.0 / p_balanced_value_time_ratio));
Vector2 vec_out = xform.xform(bt->values[p_index].value.out_handle);
Vector2 vec_in = xform.xform(in_handle);
bt->values.write[p_index].value.out_handle = xform.affine_inverse().xform(-vec_in.normalized() * vec_out.length());
} else if (bt->values[p_index].value.handle_mode == HANDLE_MODE_MIRRORED) {
bt->values.write[p_index].value.out_handle = -in_handle;
}
#endif // TOOLS_ENABLED
emit_changed();
}
void Animation::bezier_track_set_key_out_handle(int p_track, int p_index, const Vector2 &p_handle, real_t p_balanced_value_time_ratio) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t = tracks[p_track];
ERR_FAIL_COND(t->type != TYPE_BEZIER);
BezierTrack *bt = static_cast<BezierTrack *>(t);
ERR_FAIL_INDEX(p_index, bt->values.size());
Vector2 out_handle = p_handle;
if (out_handle.x < 0) {
out_handle.x = 0;
}
bt->values.write[p_index].value.out_handle = out_handle;
#ifdef TOOLS_ENABLED
if (bt->values[p_index].value.handle_mode == HANDLE_MODE_LINEAR) {
bt->values.write[p_index].value.in_handle = Vector2();
bt->values.write[p_index].value.out_handle = Vector2();
} else if (bt->values[p_index].value.handle_mode == HANDLE_MODE_BALANCED) {
Transform2D xform;
xform.set_scale(Vector2(1.0, 1.0 / p_balanced_value_time_ratio));
Vector2 vec_in = xform.xform(bt->values[p_index].value.in_handle);
Vector2 vec_out = xform.xform(out_handle);
bt->values.write[p_index].value.in_handle = xform.affine_inverse().xform(-vec_out.normalized() * vec_in.length());
} else if (bt->values[p_index].value.handle_mode == HANDLE_MODE_MIRRORED) {
bt->values.write[p_index].value.in_handle = -out_handle;
}
#endif // TOOLS_ENABLED
emit_changed();
}
real_t Animation::bezier_track_get_key_value(int p_track, int p_index) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), 0);
Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_BEZIER, 0);
BezierTrack *bt = static_cast<BezierTrack *>(t);
ERR_FAIL_INDEX_V(p_index, bt->values.size(), 0);
return bt->values[p_index].value.value;
}
Vector2 Animation::bezier_track_get_key_in_handle(int p_track, int p_index) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), Vector2());
Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_BEZIER, Vector2());
BezierTrack *bt = static_cast<BezierTrack *>(t);
ERR_FAIL_INDEX_V(p_index, bt->values.size(), Vector2());
return bt->values[p_index].value.in_handle;
}
Vector2 Animation::bezier_track_get_key_out_handle(int p_track, int p_index) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), Vector2());
Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_BEZIER, Vector2());
BezierTrack *bt = static_cast<BezierTrack *>(t);
ERR_FAIL_INDEX_V(p_index, bt->values.size(), Vector2());
return bt->values[p_index].value.out_handle;
}
#ifdef TOOLS_ENABLED
void Animation::bezier_track_set_key_handle_mode(int p_track, int p_index, HandleMode p_mode, HandleSetMode p_set_mode) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t = tracks[p_track];
ERR_FAIL_COND(t->type != TYPE_BEZIER);
BezierTrack *bt = static_cast<BezierTrack *>(t);
ERR_FAIL_INDEX(p_index, bt->values.size());
bt->values.write[p_index].value.handle_mode = p_mode;
switch (p_mode) {
case HANDLE_MODE_LINEAR: {
bt->values.write[p_index].value.in_handle = Vector2(0, 0);
bt->values.write[p_index].value.out_handle = Vector2(0, 0);
} break;
case HANDLE_MODE_BALANCED:
case HANDLE_MODE_MIRRORED: {
int prev_key = MAX(0, p_index - 1);
int next_key = MIN(bt->values.size() - 1, p_index + 1);
if (prev_key == next_key) {
break; // Exists only one key.
}
real_t in_handle_x = 0;
real_t in_handle_y = 0;
real_t out_handle_x = 0;
real_t out_handle_y = 0;
if (p_mode == HANDLE_MODE_BALANCED) {
// Note:
// If p_set_mode == HANDLE_SET_MODE_NONE, I don't know if it should change the Tangent implicitly.
// At the least, we need to avoid corrupting the handles when loading animation from the resource.
// However, changes made by the Inspector do not go through the BezierEditor,
// so if you change from Free to Balanced or Mirrored in Inspector, there is no guarantee that
// it is Balanced or Mirrored until there is a handle operation.
if (p_set_mode == HANDLE_SET_MODE_RESET) {
real_t handle_length = 1.0 / 3.0;
in_handle_x = (bt->values[prev_key].time - bt->values[p_index].time) * handle_length;
in_handle_y = 0;
out_handle_x = (bt->values[next_key].time - bt->values[p_index].time) * handle_length;
out_handle_y = 0;
bt->values.write[p_index].value.in_handle = Vector2(in_handle_x, in_handle_y);
bt->values.write[p_index].value.out_handle = Vector2(out_handle_x, out_handle_y);
} else if (p_set_mode == HANDLE_SET_MODE_AUTO) {
real_t handle_length = 1.0 / 6.0;
real_t tangent = (bt->values[next_key].value.value - bt->values[prev_key].value.value) / (bt->values[next_key].time - bt->values[prev_key].time);
in_handle_x = (bt->values[prev_key].time - bt->values[p_index].time) * handle_length;
in_handle_y = in_handle_x * tangent;
out_handle_x = (bt->values[next_key].time - bt->values[p_index].time) * handle_length;
out_handle_y = out_handle_x * tangent;
bt->values.write[p_index].value.in_handle = Vector2(in_handle_x, in_handle_y);
bt->values.write[p_index].value.out_handle = Vector2(out_handle_x, out_handle_y);
}
} else {
real_t handle_length = 1.0 / 4.0;
real_t prev_interval = Math::abs(bt->values[p_index].time - bt->values[prev_key].time);
real_t next_interval = Math::abs(bt->values[p_index].time - bt->values[next_key].time);
real_t min_time = 0;
if (Math::is_zero_approx(prev_interval)) {
min_time = next_interval;
} else if (Math::is_zero_approx(next_interval)) {
min_time = prev_interval;
} else {
min_time = MIN(prev_interval, next_interval);
}
if (p_set_mode == HANDLE_SET_MODE_RESET) {
in_handle_x = -min_time * handle_length;
in_handle_y = 0;
out_handle_x = min_time * handle_length;
out_handle_y = 0;
bt->values.write[p_index].value.in_handle = Vector2(in_handle_x, in_handle_y);
bt->values.write[p_index].value.out_handle = Vector2(out_handle_x, out_handle_y);
} else if (p_set_mode == HANDLE_SET_MODE_AUTO) {
real_t tangent = (bt->values[next_key].value.value - bt->values[prev_key].value.value) / min_time;
in_handle_x = -min_time * handle_length;
in_handle_y = in_handle_x * tangent;
out_handle_x = min_time * handle_length;
out_handle_y = out_handle_x * tangent;
bt->values.write[p_index].value.in_handle = Vector2(in_handle_x, in_handle_y);
bt->values.write[p_index].value.out_handle = Vector2(out_handle_x, out_handle_y);
}
}
} break;
default: {
} break;
}
emit_changed();
}
Animation::HandleMode Animation::bezier_track_get_key_handle_mode(int p_track, int p_index) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), HANDLE_MODE_FREE);
Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_BEZIER, HANDLE_MODE_FREE);
BezierTrack *bt = static_cast<BezierTrack *>(t);
ERR_FAIL_INDEX_V(p_index, bt->values.size(), HANDLE_MODE_FREE);
return bt->values[p_index].value.handle_mode;
}
#endif // TOOLS_ENABLED
real_t Animation::bezier_track_interpolate(int p_track, double p_time) const {
//this uses a different interpolation scheme
ERR_FAIL_INDEX_V(p_track, tracks.size(), 0);
Track *track = tracks[p_track];
ERR_FAIL_COND_V(track->type != TYPE_BEZIER, 0);
BezierTrack *bt = static_cast<BezierTrack *>(track);
int len = _find(bt->values, length) + 1; // try to find last key (there may be more past the end)
if (len <= 0) {
// (-1 or -2 returned originally) (plus one above)
return 0;
} else if (len == 1) { // one key found (0+1), return it
return bt->values[0].value.value;
}
int idx = _find(bt->values, p_time);
ERR_FAIL_COND_V(idx == -2, 0);
//there really is no looping interpolation on bezier
if (idx < 0) {
return bt->values[0].value.value;
}
if (idx >= bt->values.size() - 1) {
return bt->values[bt->values.size() - 1].value.value;
}
double t = p_time - bt->values[idx].time;
int iterations = 10;
real_t duration = bt->values[idx + 1].time - bt->values[idx].time; // time duration between our two keyframes
real_t low = 0.0; // 0% of the current animation segment
real_t high = 1.0; // 100% of the current animation segment
Vector2 start(0, bt->values[idx].value.value);
Vector2 start_out = start + bt->values[idx].value.out_handle;
Vector2 end(duration, bt->values[idx + 1].value.value);
Vector2 end_in = end + bt->values[idx + 1].value.in_handle;
//narrow high and low as much as possible
for (int i = 0; i < iterations; i++) {
real_t middle = (low + high) / 2;
Vector2 interp = start.bezier_interpolate(start_out, end_in, end, middle);
if (interp.x < t) {
low = middle;
} else {
high = middle;
}
}
//interpolate the result:
Vector2 low_pos = start.bezier_interpolate(start_out, end_in, end, low);
Vector2 high_pos = start.bezier_interpolate(start_out, end_in, end, high);
real_t c = (t - low_pos.x) / (high_pos.x - low_pos.x);
return low_pos.lerp(high_pos, c).y;
}
int Animation::audio_track_insert_key(int p_track, double p_time, const Ref<Resource> &p_stream, real_t p_start_offset, real_t p_end_offset) {
ERR_FAIL_INDEX_V(p_track, tracks.size(), -1);
Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_AUDIO, -1);
AudioTrack *at = static_cast<AudioTrack *>(t);
TKey<AudioKey> k;
k.time = p_time;
k.value.stream = p_stream;
k.value.start_offset = p_start_offset;
if (k.value.start_offset < 0) {
k.value.start_offset = 0;
}
k.value.end_offset = p_end_offset;
if (k.value.end_offset < 0) {
k.value.end_offset = 0;
}
int key = _insert(p_time, at->values, k);
emit_changed();
return key;
}
void Animation::audio_track_set_key_stream(int p_track, int p_key, const Ref<Resource> &p_stream) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t = tracks[p_track];
ERR_FAIL_COND(t->type != TYPE_AUDIO);
AudioTrack *at = static_cast<AudioTrack *>(t);
ERR_FAIL_INDEX(p_key, at->values.size());
at->values.write[p_key].value.stream = p_stream;
emit_changed();
}
void Animation::audio_track_set_key_start_offset(int p_track, int p_key, real_t p_offset) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t = tracks[p_track];
ERR_FAIL_COND(t->type != TYPE_AUDIO);
AudioTrack *at = static_cast<AudioTrack *>(t);
ERR_FAIL_INDEX(p_key, at->values.size());
if (p_offset < 0) {
p_offset = 0;
}
at->values.write[p_key].value.start_offset = p_offset;
emit_changed();
}
void Animation::audio_track_set_key_end_offset(int p_track, int p_key, real_t p_offset) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t = tracks[p_track];
ERR_FAIL_COND(t->type != TYPE_AUDIO);
AudioTrack *at = static_cast<AudioTrack *>(t);
ERR_FAIL_INDEX(p_key, at->values.size());
if (p_offset < 0) {
p_offset = 0;
}
at->values.write[p_key].value.end_offset = p_offset;
emit_changed();
}
Ref<Resource> Animation::audio_track_get_key_stream(int p_track, int p_key) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), Ref<Resource>());
const Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_AUDIO, Ref<Resource>());
const AudioTrack *at = static_cast<const AudioTrack *>(t);
ERR_FAIL_INDEX_V(p_key, at->values.size(), Ref<Resource>());
return at->values[p_key].value.stream;
}
real_t Animation::audio_track_get_key_start_offset(int p_track, int p_key) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), 0);
const Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_AUDIO, 0);
const AudioTrack *at = static_cast<const AudioTrack *>(t);
ERR_FAIL_INDEX_V(p_key, at->values.size(), 0);
return at->values[p_key].value.start_offset;
}
real_t Animation::audio_track_get_key_end_offset(int p_track, int p_key) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), 0);
const Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_AUDIO, 0);
const AudioTrack *at = static_cast<const AudioTrack *>(t);
ERR_FAIL_INDEX_V(p_key, at->values.size(), 0);
return at->values[p_key].value.end_offset;
}
void Animation::audio_track_set_use_blend(int p_track, bool p_enable) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t = tracks[p_track];
ERR_FAIL_COND(t->type != TYPE_AUDIO);
AudioTrack *at = static_cast<AudioTrack *>(t);
at->use_blend = p_enable;
emit_changed();
}
bool Animation::audio_track_is_use_blend(int p_track) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), false);
Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_AUDIO, false);
AudioTrack *at = static_cast<AudioTrack *>(t);
return at->use_blend;
}
//
int Animation::animation_track_insert_key(int p_track, double p_time, const StringName &p_animation) {
ERR_FAIL_INDEX_V(p_track, tracks.size(), -1);
Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_ANIMATION, -1);
AnimationTrack *at = static_cast<AnimationTrack *>(t);
TKey<StringName> k;
k.time = p_time;
k.value = p_animation;
int key = _insert(p_time, at->values, k);
emit_changed();
return key;
}
void Animation::animation_track_set_key_animation(int p_track, int p_key, const StringName &p_animation) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t = tracks[p_track];
ERR_FAIL_COND(t->type != TYPE_ANIMATION);
AnimationTrack *at = static_cast<AnimationTrack *>(t);
ERR_FAIL_INDEX(p_key, at->values.size());
at->values.write[p_key].value = p_animation;
emit_changed();
}
StringName Animation::animation_track_get_key_animation(int p_track, int p_key) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), StringName());
const Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_ANIMATION, StringName());
const AnimationTrack *at = static_cast<const AnimationTrack *>(t);
ERR_FAIL_INDEX_V(p_key, at->values.size(), StringName());
return at->values[p_key].value;
}
void Animation::set_length(real_t p_length) {
if (p_length < ANIM_MIN_LENGTH) {
p_length = ANIM_MIN_LENGTH;
}
length = p_length;
emit_changed();
}
real_t Animation::get_length() const {
return length;
}
void Animation::set_loop_mode(Animation::LoopMode p_loop_mode) {
loop_mode = p_loop_mode;
emit_changed();
}
Animation::LoopMode Animation::get_loop_mode() const {
return loop_mode;
}
void Animation::track_set_imported(int p_track, bool p_imported) {
ERR_FAIL_INDEX(p_track, tracks.size());
tracks[p_track]->imported = p_imported;
}
bool Animation::track_is_imported(int p_track) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), false);
return tracks[p_track]->imported;
}
void Animation::track_set_enabled(int p_track, bool p_enabled) {
ERR_FAIL_INDEX(p_track, tracks.size());
tracks[p_track]->enabled = p_enabled;
emit_changed();
}
bool Animation::track_is_enabled(int p_track) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), false);
return tracks[p_track]->enabled;
}
void Animation::track_move_up(int p_track) {
if (p_track >= 0 && p_track < (tracks.size() - 1)) {
SWAP(tracks.write[p_track], tracks.write[p_track + 1]);
}
emit_changed();
}
void Animation::track_move_down(int p_track) {
if (p_track > 0 && p_track < tracks.size()) {
SWAP(tracks.write[p_track], tracks.write[p_track - 1]);
}
emit_changed();
}
void Animation::track_move_to(int p_track, int p_to_index) {
ERR_FAIL_INDEX(p_track, tracks.size());
ERR_FAIL_INDEX(p_to_index, tracks.size() + 1);
if (p_track == p_to_index || p_track == p_to_index - 1) {
return;
}
Track *track = tracks.get(p_track);
tracks.remove_at(p_track);
// Take into account that the position of the tracks that come after the one removed will change.
tracks.insert(p_to_index > p_track ? p_to_index - 1 : p_to_index, track);
emit_changed();
}
void Animation::track_swap(int p_track, int p_with_track) {
ERR_FAIL_INDEX(p_track, tracks.size());
ERR_FAIL_INDEX(p_with_track, tracks.size());
if (p_track == p_with_track) {
return;
}
SWAP(tracks.write[p_track], tracks.write[p_with_track]);
emit_changed();
}
void Animation::set_step(real_t p_step) {
step = p_step;
emit_changed();
}
real_t Animation::get_step() const {
return step;
}
void Animation::copy_track(int p_track, Ref<Animation> p_to_animation) {
ERR_FAIL_COND(p_to_animation.is_null());
ERR_FAIL_INDEX(p_track, get_track_count());
int dst_track = p_to_animation->get_track_count();
p_to_animation->add_track(track_get_type(p_track));
p_to_animation->track_set_path(dst_track, track_get_path(p_track));
p_to_animation->track_set_imported(dst_track, track_is_imported(p_track));
p_to_animation->track_set_enabled(dst_track, track_is_enabled(p_track));
p_to_animation->track_set_interpolation_type(dst_track, track_get_interpolation_type(p_track));
p_to_animation->track_set_interpolation_loop_wrap(dst_track, track_get_interpolation_loop_wrap(p_track));
if (track_get_type(p_track) == TYPE_VALUE) {
p_to_animation->value_track_set_update_mode(dst_track, value_track_get_update_mode(p_track));
}
for (int i = 0; i < track_get_key_count(p_track); i++) {
p_to_animation->track_insert_key(dst_track, track_get_key_time(p_track, i), track_get_key_value(p_track, i), track_get_key_transition(p_track, i));
}
}
void Animation::_bind_methods() {
ClassDB::bind_method(D_METHOD("add_track", "type", "at_position"), &Animation::add_track, DEFVAL(-1));
ClassDB::bind_method(D_METHOD("remove_track", "track_idx"), &Animation::remove_track);
ClassDB::bind_method(D_METHOD("get_track_count"), &Animation::get_track_count);
ClassDB::bind_method(D_METHOD("track_get_type", "track_idx"), &Animation::track_get_type);
ClassDB::bind_method(D_METHOD("track_get_path", "track_idx"), &Animation::track_get_path);
ClassDB::bind_method(D_METHOD("track_set_path", "track_idx", "path"), &Animation::track_set_path);
ClassDB::bind_method(D_METHOD("find_track", "path", "type"), &Animation::find_track);
ClassDB::bind_method(D_METHOD("track_move_up", "track_idx"), &Animation::track_move_up);
ClassDB::bind_method(D_METHOD("track_move_down", "track_idx"), &Animation::track_move_down);
ClassDB::bind_method(D_METHOD("track_move_to", "track_idx", "to_idx"), &Animation::track_move_to);
ClassDB::bind_method(D_METHOD("track_swap", "track_idx", "with_idx"), &Animation::track_swap);
ClassDB::bind_method(D_METHOD("track_set_imported", "track_idx", "imported"), &Animation::track_set_imported);
ClassDB::bind_method(D_METHOD("track_is_imported", "track_idx"), &Animation::track_is_imported);
ClassDB::bind_method(D_METHOD("track_set_enabled", "track_idx", "enabled"), &Animation::track_set_enabled);
ClassDB::bind_method(D_METHOD("track_is_enabled", "track_idx"), &Animation::track_is_enabled);
ClassDB::bind_method(D_METHOD("position_track_insert_key", "track_idx", "time", "position"), &Animation::position_track_insert_key);
ClassDB::bind_method(D_METHOD("rotation_track_insert_key", "track_idx", "time", "rotation"), &Animation::rotation_track_insert_key);
ClassDB::bind_method(D_METHOD("scale_track_insert_key", "track_idx", "time", "scale"), &Animation::scale_track_insert_key);
ClassDB::bind_method(D_METHOD("blend_shape_track_insert_key", "track_idx", "time", "amount"), &Animation::blend_shape_track_insert_key);
ClassDB::bind_method(D_METHOD("position_track_interpolate", "track_idx", "time_sec", "backward"), &Animation::position_track_interpolate, DEFVAL(false));
ClassDB::bind_method(D_METHOD("rotation_track_interpolate", "track_idx", "time_sec", "backward"), &Animation::rotation_track_interpolate, DEFVAL(false));
ClassDB::bind_method(D_METHOD("scale_track_interpolate", "track_idx", "time_sec", "backward"), &Animation::scale_track_interpolate, DEFVAL(false));
ClassDB::bind_method(D_METHOD("blend_shape_track_interpolate", "track_idx", "time_sec", "backward"), &Animation::blend_shape_track_interpolate, DEFVAL(false));
ClassDB::bind_method(D_METHOD("track_insert_key", "track_idx", "time", "key", "transition"), &Animation::track_insert_key, DEFVAL(1));
ClassDB::bind_method(D_METHOD("track_remove_key", "track_idx", "key_idx"), &Animation::track_remove_key);
ClassDB::bind_method(D_METHOD("track_remove_key_at_time", "track_idx", "time"), &Animation::track_remove_key_at_time);
ClassDB::bind_method(D_METHOD("track_set_key_value", "track_idx", "key", "value"), &Animation::track_set_key_value);
ClassDB::bind_method(D_METHOD("track_set_key_transition", "track_idx", "key_idx", "transition"), &Animation::track_set_key_transition);
ClassDB::bind_method(D_METHOD("track_set_key_time", "track_idx", "key_idx", "time"), &Animation::track_set_key_time);
ClassDB::bind_method(D_METHOD("track_get_key_transition", "track_idx", "key_idx"), &Animation::track_get_key_transition);
ClassDB::bind_method(D_METHOD("track_get_key_count", "track_idx"), &Animation::track_get_key_count);
ClassDB::bind_method(D_METHOD("track_get_key_value", "track_idx", "key_idx"), &Animation::track_get_key_value);
ClassDB::bind_method(D_METHOD("track_get_key_time", "track_idx", "key_idx"), &Animation::track_get_key_time);
ClassDB::bind_method(D_METHOD("track_find_key", "track_idx", "time", "find_mode", "limit", "backward"), &Animation::track_find_key, DEFVAL(FIND_MODE_NEAREST), DEFVAL(false), DEFVAL(false));
ClassDB::bind_method(D_METHOD("track_set_interpolation_type", "track_idx", "interpolation"), &Animation::track_set_interpolation_type);
ClassDB::bind_method(D_METHOD("track_get_interpolation_type", "track_idx"), &Animation::track_get_interpolation_type);
ClassDB::bind_method(D_METHOD("track_set_interpolation_loop_wrap", "track_idx", "interpolation"), &Animation::track_set_interpolation_loop_wrap);
ClassDB::bind_method(D_METHOD("track_get_interpolation_loop_wrap", "track_idx"), &Animation::track_get_interpolation_loop_wrap);
ClassDB::bind_method(D_METHOD("track_is_compressed", "track_idx"), &Animation::track_is_compressed);
ClassDB::bind_method(D_METHOD("value_track_set_update_mode", "track_idx", "mode"), &Animation::value_track_set_update_mode);
ClassDB::bind_method(D_METHOD("value_track_get_update_mode", "track_idx"), &Animation::value_track_get_update_mode);
ClassDB::bind_method(D_METHOD("value_track_interpolate", "track_idx", "time_sec", "backward"), &Animation::value_track_interpolate, DEFVAL(false));
ClassDB::bind_method(D_METHOD("method_track_get_name", "track_idx", "key_idx"), &Animation::method_track_get_name);
ClassDB::bind_method(D_METHOD("method_track_get_params", "track_idx", "key_idx"), &Animation::method_track_get_params);
ClassDB::bind_method(D_METHOD("bezier_track_insert_key", "track_idx", "time", "value", "in_handle", "out_handle"), &Animation::bezier_track_insert_key, DEFVAL(Vector2()), DEFVAL(Vector2()));
ClassDB::bind_method(D_METHOD("bezier_track_set_key_value", "track_idx", "key_idx", "value"), &Animation::bezier_track_set_key_value);
ClassDB::bind_method(D_METHOD("bezier_track_set_key_in_handle", "track_idx", "key_idx", "in_handle", "balanced_value_time_ratio"), &Animation::bezier_track_set_key_in_handle, DEFVAL(1.0));
ClassDB::bind_method(D_METHOD("bezier_track_set_key_out_handle", "track_idx", "key_idx", "out_handle", "balanced_value_time_ratio"), &Animation::bezier_track_set_key_out_handle, DEFVAL(1.0));
ClassDB::bind_method(D_METHOD("bezier_track_get_key_value", "track_idx", "key_idx"), &Animation::bezier_track_get_key_value);
ClassDB::bind_method(D_METHOD("bezier_track_get_key_in_handle", "track_idx", "key_idx"), &Animation::bezier_track_get_key_in_handle);
ClassDB::bind_method(D_METHOD("bezier_track_get_key_out_handle", "track_idx", "key_idx"), &Animation::bezier_track_get_key_out_handle);
ClassDB::bind_method(D_METHOD("bezier_track_interpolate", "track_idx", "time"), &Animation::bezier_track_interpolate);
ClassDB::bind_method(D_METHOD("audio_track_insert_key", "track_idx", "time", "stream", "start_offset", "end_offset"), &Animation::audio_track_insert_key, DEFVAL(0), DEFVAL(0));
ClassDB::bind_method(D_METHOD("audio_track_set_key_stream", "track_idx", "key_idx", "stream"), &Animation::audio_track_set_key_stream);
ClassDB::bind_method(D_METHOD("audio_track_set_key_start_offset", "track_idx", "key_idx", "offset"), &Animation::audio_track_set_key_start_offset);
ClassDB::bind_method(D_METHOD("audio_track_set_key_end_offset", "track_idx", "key_idx", "offset"), &Animation::audio_track_set_key_end_offset);
ClassDB::bind_method(D_METHOD("audio_track_get_key_stream", "track_idx", "key_idx"), &Animation::audio_track_get_key_stream);
ClassDB::bind_method(D_METHOD("audio_track_get_key_start_offset", "track_idx", "key_idx"), &Animation::audio_track_get_key_start_offset);
ClassDB::bind_method(D_METHOD("audio_track_get_key_end_offset", "track_idx", "key_idx"), &Animation::audio_track_get_key_end_offset);
ClassDB::bind_method(D_METHOD("audio_track_set_use_blend", "track_idx", "enable"), &Animation::audio_track_set_use_blend);
ClassDB::bind_method(D_METHOD("audio_track_is_use_blend", "track_idx"), &Animation::audio_track_is_use_blend);
ClassDB::bind_method(D_METHOD("animation_track_insert_key", "track_idx", "time", "animation"), &Animation::animation_track_insert_key);
ClassDB::bind_method(D_METHOD("animation_track_set_key_animation", "track_idx", "key_idx", "animation"), &Animation::animation_track_set_key_animation);
ClassDB::bind_method(D_METHOD("animation_track_get_key_animation", "track_idx", "key_idx"), &Animation::animation_track_get_key_animation);
ClassDB::bind_method(D_METHOD("add_marker", "name", "time"), &Animation::add_marker);
ClassDB::bind_method(D_METHOD("remove_marker", "name"), &Animation::remove_marker);
ClassDB::bind_method(D_METHOD("has_marker", "name"), &Animation::has_marker);
ClassDB::bind_method(D_METHOD("get_marker_at_time", "time"), &Animation::get_marker_at_time);
ClassDB::bind_method(D_METHOD("get_next_marker", "time"), &Animation::get_next_marker);
ClassDB::bind_method(D_METHOD("get_prev_marker", "time"), &Animation::get_prev_marker);
ClassDB::bind_method(D_METHOD("get_marker_time", "name"), &Animation::get_marker_time);
ClassDB::bind_method(D_METHOD("get_marker_names"), &Animation::get_marker_names);
ClassDB::bind_method(D_METHOD("get_marker_color", "name"), &Animation::get_marker_color);
ClassDB::bind_method(D_METHOD("set_marker_color", "name", "color"), &Animation::set_marker_color);
ClassDB::bind_method(D_METHOD("set_length", "time_sec"), &Animation::set_length);
ClassDB::bind_method(D_METHOD("get_length"), &Animation::get_length);
ClassDB::bind_method(D_METHOD("set_loop_mode", "loop_mode"), &Animation::set_loop_mode);
ClassDB::bind_method(D_METHOD("get_loop_mode"), &Animation::get_loop_mode);
ClassDB::bind_method(D_METHOD("set_step", "size_sec"), &Animation::set_step);
ClassDB::bind_method(D_METHOD("get_step"), &Animation::get_step);
ClassDB::bind_method(D_METHOD("clear"), &Animation::clear);
ClassDB::bind_method(D_METHOD("copy_track", "track_idx", "to_animation"), &Animation::copy_track);
ClassDB::bind_method(D_METHOD("optimize", "allowed_velocity_err", "allowed_angular_err", "precision"), &Animation::optimize, DEFVAL(0.01), DEFVAL(0.01), DEFVAL(3));
ClassDB::bind_method(D_METHOD("compress", "page_size", "fps", "split_tolerance"), &Animation::compress, DEFVAL(8192), DEFVAL(120), DEFVAL(4.0));
ClassDB::bind_method(D_METHOD("is_capture_included"), &Animation::is_capture_included);
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "length", PROPERTY_HINT_RANGE, "0.001,99999,0.001,suffix:s"), "set_length", "get_length");
ADD_PROPERTY(PropertyInfo(Variant::INT, "loop_mode", PROPERTY_HINT_ENUM, "None,Linear,Ping-Pong"), "set_loop_mode", "get_loop_mode");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "step", PROPERTY_HINT_RANGE, "0,4096,0.001,suffix:s"), "set_step", "get_step");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "capture_included", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR), "", "is_capture_included");
BIND_ENUM_CONSTANT(TYPE_VALUE);
BIND_ENUM_CONSTANT(TYPE_POSITION_3D);
BIND_ENUM_CONSTANT(TYPE_ROTATION_3D);
BIND_ENUM_CONSTANT(TYPE_SCALE_3D);
BIND_ENUM_CONSTANT(TYPE_BLEND_SHAPE);
BIND_ENUM_CONSTANT(TYPE_METHOD);
BIND_ENUM_CONSTANT(TYPE_BEZIER);
BIND_ENUM_CONSTANT(TYPE_AUDIO);
BIND_ENUM_CONSTANT(TYPE_ANIMATION);
BIND_ENUM_CONSTANT(INTERPOLATION_NEAREST);
BIND_ENUM_CONSTANT(INTERPOLATION_LINEAR);
BIND_ENUM_CONSTANT(INTERPOLATION_CUBIC);
BIND_ENUM_CONSTANT(INTERPOLATION_LINEAR_ANGLE);
BIND_ENUM_CONSTANT(INTERPOLATION_CUBIC_ANGLE);
BIND_ENUM_CONSTANT(UPDATE_CONTINUOUS);
BIND_ENUM_CONSTANT(UPDATE_DISCRETE);
BIND_ENUM_CONSTANT(UPDATE_CAPTURE);
BIND_ENUM_CONSTANT(LOOP_NONE);
BIND_ENUM_CONSTANT(LOOP_LINEAR);
BIND_ENUM_CONSTANT(LOOP_PINGPONG);
BIND_ENUM_CONSTANT(LOOPED_FLAG_NONE);
BIND_ENUM_CONSTANT(LOOPED_FLAG_END);
BIND_ENUM_CONSTANT(LOOPED_FLAG_START);
BIND_ENUM_CONSTANT(FIND_MODE_NEAREST);
BIND_ENUM_CONSTANT(FIND_MODE_APPROX);
BIND_ENUM_CONSTANT(FIND_MODE_EXACT);
}
void Animation::clear() {
for (int i = 0; i < tracks.size(); i++) {
memdelete(tracks[i]);
}
tracks.clear();
loop_mode = LOOP_NONE;
length = 1;
compression.enabled = false;
compression.bounds.clear();
compression.pages.clear();
compression.fps = 120;
emit_changed();
}
bool Animation::_float_track_optimize_key(const TKey<float> t0, const TKey<float> t1, const TKey<float> t2, real_t p_allowed_velocity_err, real_t p_allowed_precision_error) {
// Remove overlapping keys.
if (Math::is_equal_approx(t0.time, t1.time) || Math::is_equal_approx(t1.time, t2.time)) {
return true;
}
if (abs(t0.value - t1.value) < p_allowed_precision_error && abs(t1.value - t2.value) < p_allowed_precision_error) {
return true;
}
// Calc velocities.
double v0 = (t1.value - t0.value) / (t1.time - t0.time);
double v1 = (t2.value - t1.value) / (t2.time - t1.time);
// Avoid zero div but check equality.
if (abs(v0 - v1) < p_allowed_precision_error) {
return true;
} else if (abs(v0) < p_allowed_precision_error || abs(v1) < p_allowed_precision_error) {
return false;
}
if (!signbit(v0 * v1)) {
v0 = abs(v0);
v1 = abs(v1);
double ratio = v0 < v1 ? v0 / v1 : v1 / v0;
if (ratio >= 1.0 - p_allowed_velocity_err) {
return true;
}
}
return false;
}
bool Animation::_vector2_track_optimize_key(const TKey<Vector2> t0, const TKey<Vector2> t1, const TKey<Vector2> t2, real_t p_allowed_velocity_err, real_t p_allowed_angular_error, real_t p_allowed_precision_error) {
// Remove overlapping keys.
if (Math::is_equal_approx(t0.time, t1.time) || Math::is_equal_approx(t1.time, t2.time)) {
return true;
}
if ((t0.value - t1.value).length() < p_allowed_precision_error && (t1.value - t2.value).length() < p_allowed_precision_error) {
return true;
}
// Calc velocities.
Vector2 vc0 = (t1.value - t0.value) / (t1.time - t0.time);
Vector2 vc1 = (t2.value - t1.value) / (t2.time - t1.time);
double v0 = vc0.length();
double v1 = vc1.length();
// Avoid zero div but check equality.
if (abs(v0 - v1) < p_allowed_precision_error) {
return true;
} else if (abs(v0) < p_allowed_precision_error || abs(v1) < p_allowed_precision_error) {
return false;
}
// Check axis.
if (vc0.normalized().dot(vc1.normalized()) >= 1.0 - p_allowed_angular_error * 2.0) {
v0 = abs(v0);
v1 = abs(v1);
double ratio = v0 < v1 ? v0 / v1 : v1 / v0;
if (ratio >= 1.0 - p_allowed_velocity_err) {
return true;
}
}
return false;
}
bool Animation::_vector3_track_optimize_key(const TKey<Vector3> t0, const TKey<Vector3> t1, const TKey<Vector3> t2, real_t p_allowed_velocity_err, real_t p_allowed_angular_error, real_t p_allowed_precision_error) {
// Remove overlapping keys.
if (Math::is_equal_approx(t0.time, t1.time) || Math::is_equal_approx(t1.time, t2.time)) {
return true;
}
if ((t0.value - t1.value).length() < p_allowed_precision_error && (t1.value - t2.value).length() < p_allowed_precision_error) {
return true;
}
// Calc velocities.
Vector3 vc0 = (t1.value - t0.value) / (t1.time - t0.time);
Vector3 vc1 = (t2.value - t1.value) / (t2.time - t1.time);
double v0 = vc0.length();
double v1 = vc1.length();
// Avoid zero div but check equality.
if (abs(v0 - v1) < p_allowed_precision_error) {
return true;
} else if (abs(v0) < p_allowed_precision_error || abs(v1) < p_allowed_precision_error) {
return false;
}
// Check axis.
if (vc0.normalized().dot(vc1.normalized()) >= 1.0 - p_allowed_angular_error * 2.0) {
v0 = abs(v0);
v1 = abs(v1);
double ratio = v0 < v1 ? v0 / v1 : v1 / v0;
if (ratio >= 1.0 - p_allowed_velocity_err) {
return true;
}
}
return false;
}
bool Animation::_quaternion_track_optimize_key(const TKey<Quaternion> t0, const TKey<Quaternion> t1, const TKey<Quaternion> t2, real_t p_allowed_velocity_err, real_t p_allowed_angular_error, real_t p_allowed_precision_error) {
// Remove overlapping keys.
if (Math::is_equal_approx(t0.time, t1.time) || Math::is_equal_approx(t1.time, t2.time)) {
return true;
}
if ((t0.value - t1.value).length() < p_allowed_precision_error && (t1.value - t2.value).length() < p_allowed_precision_error) {
return true;
}
// Check axis.
Quaternion q0 = t0.value * t1.value * t0.value.inverse();
Quaternion q1 = t1.value * t2.value * t1.value.inverse();
if (q0.get_axis().dot(q1.get_axis()) >= 1.0 - p_allowed_angular_error * 2.0) {
double a0 = Math::acos(t0.value.dot(t1.value));
double a1 = Math::acos(t1.value.dot(t2.value));
if (a0 + a1 >= Math_PI / 2) {
return false; // Rotation is more than 180 deg, keep key.
}
// Calc velocities.
double v0 = a0 / (t1.time - t0.time);
double v1 = a1 / (t2.time - t1.time);
// Avoid zero div but check equality.
if (abs(v0 - v1) < p_allowed_precision_error) {
return true;
} else if (abs(v0) < p_allowed_precision_error || abs(v1) < p_allowed_precision_error) {
return false;
}
double ratio = v0 < v1 ? v0 / v1 : v1 / v0;
if (ratio >= 1.0 - p_allowed_velocity_err) {
return true;
}
}
return false;
}
void Animation::_position_track_optimize(int p_idx, real_t p_allowed_velocity_err, real_t p_allowed_angular_err, real_t p_allowed_precision_error) {
ERR_FAIL_INDEX(p_idx, tracks.size());
ERR_FAIL_COND(tracks[p_idx]->type != TYPE_POSITION_3D);
PositionTrack *tt = static_cast<PositionTrack *>(tracks[p_idx]);
int i = 0;
while (i < tt->positions.size() - 2) {
TKey<Vector3> t0 = tt->positions[i];
TKey<Vector3> t1 = tt->positions[i + 1];
TKey<Vector3> t2 = tt->positions[i + 2];
bool erase = _vector3_track_optimize_key(t0, t1, t2, p_allowed_velocity_err, p_allowed_angular_err, p_allowed_precision_error);
if (erase) {
tt->positions.remove_at(i + 1);
} else {
i++;
}
}
if (tt->positions.size() == 2) {
if ((tt->positions[0].value - tt->positions[1].value).length() < p_allowed_precision_error) {
tt->positions.remove_at(1);
}
}
}
void Animation::_rotation_track_optimize(int p_idx, real_t p_allowed_velocity_err, real_t p_allowed_angular_err, real_t p_allowed_precision_error) {
ERR_FAIL_INDEX(p_idx, tracks.size());
ERR_FAIL_COND(tracks[p_idx]->type != TYPE_ROTATION_3D);
RotationTrack *rt = static_cast<RotationTrack *>(tracks[p_idx]);
int i = 0;
while (i < rt->rotations.size() - 2) {
TKey<Quaternion> t0 = rt->rotations[i];
TKey<Quaternion> t1 = rt->rotations[i + 1];
TKey<Quaternion> t2 = rt->rotations[i + 2];
bool erase = _quaternion_track_optimize_key(t0, t1, t2, p_allowed_velocity_err, p_allowed_angular_err, p_allowed_precision_error);
if (erase) {
rt->rotations.remove_at(i + 1);
} else {
i++;
}
}
if (rt->rotations.size() == 2) {
if ((rt->rotations[0].value - rt->rotations[1].value).length() < p_allowed_precision_error) {
rt->rotations.remove_at(1);
}
}
}
void Animation::_scale_track_optimize(int p_idx, real_t p_allowed_velocity_err, real_t p_allowed_angular_err, real_t p_allowed_precision_error) {
ERR_FAIL_INDEX(p_idx, tracks.size());
ERR_FAIL_COND(tracks[p_idx]->type != TYPE_SCALE_3D);
ScaleTrack *st = static_cast<ScaleTrack *>(tracks[p_idx]);
int i = 0;
while (i < st->scales.size() - 2) {
TKey<Vector3> t0 = st->scales[i];
TKey<Vector3> t1 = st->scales[i + 1];
TKey<Vector3> t2 = st->scales[i + 2];
bool erase = _vector3_track_optimize_key(t0, t1, t2, p_allowed_velocity_err, p_allowed_angular_err, p_allowed_precision_error);
if (erase) {
st->scales.remove_at(i + 1);
} else {
i++;
}
}
if (st->scales.size() == 2) {
if ((st->scales[0].value - st->scales[1].value).length() < p_allowed_precision_error) {
st->scales.remove_at(1);
}
}
}
void Animation::_blend_shape_track_optimize(int p_idx, real_t p_allowed_velocity_err, real_t p_allowed_precision_error) {
ERR_FAIL_INDEX(p_idx, tracks.size());
ERR_FAIL_COND(tracks[p_idx]->type != TYPE_BLEND_SHAPE);
BlendShapeTrack *bst = static_cast<BlendShapeTrack *>(tracks[p_idx]);
int i = 0;
while (i < bst->blend_shapes.size() - 2) {
TKey<float> t0 = bst->blend_shapes[i];
TKey<float> t1 = bst->blend_shapes[i + 1];
TKey<float> t2 = bst->blend_shapes[i + 2];
bool erase = _float_track_optimize_key(t0, t1, t2, p_allowed_velocity_err, p_allowed_precision_error);
if (erase) {
bst->blend_shapes.remove_at(i + 1);
} else {
i++;
}
}
if (bst->blend_shapes.size() == 2) {
if (abs(bst->blend_shapes[0].value - bst->blend_shapes[1].value) < p_allowed_precision_error) {
bst->blend_shapes.remove_at(1);
}
}
}
void Animation::_value_track_optimize(int p_idx, real_t p_allowed_velocity_err, real_t p_allowed_angular_err, real_t p_allowed_precision_error) {
ERR_FAIL_INDEX(p_idx, tracks.size());
ERR_FAIL_COND(tracks[p_idx]->type != TYPE_VALUE);
ValueTrack *vt = static_cast<ValueTrack *>(tracks[p_idx]);
if (vt->values.size() == 0) {
return;
}
Variant::Type type = vt->values[0].value.get_type();
// Special case for angle interpolation.
bool is_using_angle = vt->interpolation == Animation::INTERPOLATION_LINEAR_ANGLE || vt->interpolation == Animation::INTERPOLATION_CUBIC_ANGLE;
int i = 0;
while (i < vt->values.size() - 2) {
bool erase = false;
switch (type) {
case Variant::FLOAT: {
TKey<float> t0;
TKey<float> t1;
TKey<float> t2;
t0.time = vt->values[i].time;
t1.time = vt->values[i + 1].time;
t2.time = vt->values[i + 2].time;
t0.value = vt->values[i].value;
t1.value = vt->values[i + 1].value;
t2.value = vt->values[i + 2].value;
if (is_using_angle) {
float diff1 = fmod(t1.value - t0.value, Math_TAU);
t1.value = t0.value + fmod(2.0 * diff1, Math_TAU) - diff1;
float diff2 = fmod(t2.value - t1.value, Math_TAU);
t2.value = t1.value + fmod(2.0 * diff2, Math_TAU) - diff2;
if (abs(abs(diff1) + abs(diff2)) >= Math_PI) {
break; // Rotation is more than 180 deg, keep key.
}
}
erase = _float_track_optimize_key(t0, t1, t2, p_allowed_velocity_err, p_allowed_precision_error);
} break;
case Variant::VECTOR2: {
TKey<Vector2> t0;
TKey<Vector2> t1;
TKey<Vector2> t2;
t0.time = vt->values[i].time;
t1.time = vt->values[i + 1].time;
t2.time = vt->values[i + 2].time;
t0.value = vt->values[i].value;
t1.value = vt->values[i + 1].value;
t2.value = vt->values[i + 2].value;
erase = _vector2_track_optimize_key(t0, t1, t2, p_allowed_velocity_err, p_allowed_angular_err, p_allowed_precision_error);
} break;
case Variant::VECTOR3: {
TKey<Vector3> t0;
TKey<Vector3> t1;
TKey<Vector3> t2;
t0.time = vt->values[i].time;
t1.time = vt->values[i + 1].time;
t2.time = vt->values[i + 2].time;
t0.value = vt->values[i].value;
t1.value = vt->values[i + 1].value;
t2.value = vt->values[i + 2].value;
erase = _vector3_track_optimize_key(t0, t1, t2, p_allowed_velocity_err, p_allowed_angular_err, p_allowed_precision_error);
} break;
case Variant::QUATERNION: {
TKey<Quaternion> t0;
TKey<Quaternion> t1;
TKey<Quaternion> t2;
t0.time = vt->values[i].time;
t1.time = vt->values[i + 1].time;
t2.time = vt->values[i + 2].time;
t0.value = vt->values[i].value;
t1.value = vt->values[i + 1].value;
t2.value = vt->values[i + 2].value;
erase = _quaternion_track_optimize_key(t0, t1, t2, p_allowed_velocity_err, p_allowed_angular_err, p_allowed_precision_error);
} break;
default: {
} break;
}
if (erase) {
vt->values.remove_at(i + 1);
} else {
i++;
}
}
if (vt->values.size() == 2) {
bool single_key = false;
switch (type) {
case Variant::FLOAT: {
float val_0 = vt->values[0].value;
float val_1 = vt->values[1].value;
if (is_using_angle) {
float diff1 = fmod(val_1 - val_0, Math_TAU);
val_1 = val_0 + fmod(2.0 * diff1, Math_TAU) - diff1;
}
single_key = abs(val_0 - val_1) < p_allowed_precision_error;
} break;
case Variant::VECTOR2: {
Vector2 val_0 = vt->values[0].value;
Vector2 val_1 = vt->values[1].value;
single_key = (val_0 - val_1).length() < p_allowed_precision_error;
} break;
case Variant::VECTOR3: {
Vector3 val_0 = vt->values[0].value;
Vector3 val_1 = vt->values[1].value;
single_key = (val_0 - val_1).length() < p_allowed_precision_error;
} break;
case Variant::QUATERNION: {
Quaternion val_0 = vt->values[0].value;
Quaternion val_1 = vt->values[1].value;
single_key = (val_0 - val_1).length() < p_allowed_precision_error;
} break;
default: {
} break;
}
if (single_key) {
vt->values.remove_at(1);
}
}
}
void Animation::optimize(real_t p_allowed_velocity_err, real_t p_allowed_angular_err, int p_precision) {
real_t precision = Math::pow(0.1, p_precision);
for (int i = 0; i < tracks.size(); i++) {
if (track_is_compressed(i)) {
continue; //not possible to optimize compressed track
}
if (tracks[i]->type == TYPE_POSITION_3D) {
_position_track_optimize(i, p_allowed_velocity_err, p_allowed_angular_err, precision);
} else if (tracks[i]->type == TYPE_ROTATION_3D) {
_rotation_track_optimize(i, p_allowed_velocity_err, p_allowed_angular_err, precision);
} else if (tracks[i]->type == TYPE_SCALE_3D) {
_scale_track_optimize(i, p_allowed_velocity_err, p_allowed_angular_err, precision);
} else if (tracks[i]->type == TYPE_BLEND_SHAPE) {
_blend_shape_track_optimize(i, p_allowed_velocity_err, precision);
} else if (tracks[i]->type == TYPE_VALUE) {
_value_track_optimize(i, p_allowed_velocity_err, p_allowed_angular_err, precision);
}
}
}
#define print_animc(m_str)
//#define print_animc(m_str) print_line(m_str);
struct AnimationCompressionDataState {
enum {
MIN_OPTIMIZE_PACKETS = 5,
MAX_PACKETS = 16
};
uint32_t components = 3;
LocalVector<uint8_t> data; // Committed packets.
struct PacketData {
int32_t data[3] = { 0, 0, 0 };
uint32_t frame = 0;
};
float split_tolerance = 1.5;
LocalVector<PacketData> temp_packets;
//used for rollback if the new frame does not fit
int32_t validated_packet_count = -1;
static int32_t _compute_delta16_signed(int32_t p_from, int32_t p_to) {
int32_t delta = p_to - p_from;
if (delta > 32767) {
return delta - 65536; // use wrap around
} else if (delta < -32768) {
return 65536 + delta; // use wrap around
}
return delta;
}
static uint32_t _compute_shift_bits_signed(int32_t p_delta) {
if (p_delta == 0) {
return 0;
} else if (p_delta < 0) {
p_delta = ABS(p_delta) - 1;
if (p_delta == 0) {
return 1;
}
}
return nearest_shift(p_delta);
}
void _compute_max_shifts(uint32_t p_from, uint32_t p_to, uint32_t *max_shifts, uint32_t &max_frame_delta_shift) const {
for (uint32_t j = 0; j < components; j++) {
max_shifts[j] = 0;
}
max_frame_delta_shift = 0;
for (uint32_t i = p_from + 1; i <= p_to; i++) {
int32_t frame_delta = temp_packets[i].frame - temp_packets[i - 1].frame;
max_frame_delta_shift = MAX(max_frame_delta_shift, nearest_shift(frame_delta));
for (uint32_t j = 0; j < components; j++) {
int32_t diff = _compute_delta16_signed(temp_packets[i - 1].data[j], temp_packets[i].data[j]);
uint32_t shift = _compute_shift_bits_signed(diff);
max_shifts[j] = MAX(shift, max_shifts[j]);
}
}
}
bool insert_key(uint32_t p_frame, const Vector3i &p_key) {
if (temp_packets.size() == MAX_PACKETS) {
commit_temp_packets();
}
PacketData packet;
packet.frame = p_frame;
for (int i = 0; i < 3; i++) {
ERR_FAIL_COND_V(p_key[i] > 65535, false); // Safety checks.
packet.data[i] = p_key[i];
}
temp_packets.push_back(packet);
if (temp_packets.size() >= MIN_OPTIMIZE_PACKETS) {
uint32_t max_shifts[3] = { 0, 0, 0 }; // Base sizes, 16 bit
uint32_t max_frame_delta_shift = 0;
// Compute the average shift before the packet was added
_compute_max_shifts(0, temp_packets.size() - 2, max_shifts, max_frame_delta_shift);
float prev_packet_size_avg = 0;
prev_packet_size_avg = float(1 << max_frame_delta_shift);
for (uint32_t i = 0; i < components; i++) {
prev_packet_size_avg += float(1 << max_shifts[i]);
}
prev_packet_size_avg /= float(1 + components);
_compute_max_shifts(temp_packets.size() - 2, temp_packets.size() - 1, max_shifts, max_frame_delta_shift);
float new_packet_size_avg = 0;
new_packet_size_avg = float(1 << max_frame_delta_shift);
for (uint32_t i = 0; i < components; i++) {
new_packet_size_avg += float(1 << max_shifts[i]);
}
new_packet_size_avg /= float(1 + components);
print_animc("packet count: " + rtos(temp_packets.size() - 1) + " size avg " + rtos(prev_packet_size_avg) + " new avg " + rtos(new_packet_size_avg));
float ratio = (prev_packet_size_avg < new_packet_size_avg) ? (new_packet_size_avg / prev_packet_size_avg) : (prev_packet_size_avg / new_packet_size_avg);
if (ratio > split_tolerance) {
print_animc("split!");
temp_packets.resize(temp_packets.size() - 1);
commit_temp_packets();
temp_packets.push_back(packet);
}
}
return temp_packets.size() == 1; // First key
}
uint32_t get_temp_packet_size() const {
if (temp_packets.size() == 0) {
return 0;
} else if (temp_packets.size() == 1) {
return components == 1 ? 4 : 8; // 1 component packet is 16 bits and 16 bits unused. 3 component packets is 48 bits and 16 bits unused
}
uint32_t max_shifts[3] = { 0, 0, 0 }; //base sizes, 16 bit
uint32_t max_frame_delta_shift = 0;
_compute_max_shifts(0, temp_packets.size() - 1, max_shifts, max_frame_delta_shift);
uint32_t size_bits = 16; //base value (all 4 bits of shift sizes for x,y,z,time)
size_bits += max_frame_delta_shift * (temp_packets.size() - 1); //times
for (uint32_t j = 0; j < components; j++) {
size_bits += 16; //base value
uint32_t shift = max_shifts[j];
if (shift > 0) {
shift += 1; //if not zero, add sign bit
}
size_bits += shift * (temp_packets.size() - 1);
}
if (size_bits % 8 != 0) { //wrap to 8 bits
size_bits += 8 - (size_bits % 8);
}
uint32_t size_bytes = size_bits / 8; //wrap to words
if (size_bytes % 4 != 0) {
size_bytes += 4 - (size_bytes % 4);
}
return size_bytes;
}
static void _push_bits(LocalVector<uint8_t> &data, uint32_t &r_buffer, uint32_t &r_bits_used, uint32_t p_value, uint32_t p_bits) {
r_buffer |= p_value << r_bits_used;
r_bits_used += p_bits;
while (r_bits_used >= 8) {
uint8_t byte = r_buffer & 0xFF;
data.push_back(byte);
r_buffer >>= 8;
r_bits_used -= 8;
}
}
void commit_temp_packets() {
if (temp_packets.size() == 0) {
return; // Nothing to do.
}
//#define DEBUG_PACKET_PUSH
#ifdef DEBUG_PACKET_PUSH
#ifndef _MSC_VER
#warning Debugging packet push, disable this code in production to gain a bit more import performance.
#endif
uint32_t debug_packet_push = get_temp_packet_size();
uint32_t debug_data_size = data.size();
#endif
// Store header
uint8_t header[8];
uint32_t header_bytes = 0;
for (uint32_t i = 0; i < components; i++) {
encode_uint16(temp_packets[0].data[i], &header[header_bytes]);
header_bytes += 2;
}
uint32_t max_shifts[3] = { 0, 0, 0 }; //base sizes, 16 bit
uint32_t max_frame_delta_shift = 0;
if (temp_packets.size() > 1) {
_compute_max_shifts(0, temp_packets.size() - 1, max_shifts, max_frame_delta_shift);
uint16_t shift_header = (max_frame_delta_shift - 1) << 12;
for (uint32_t i = 0; i < components; i++) {
shift_header |= max_shifts[i] << (4 * i);
}
encode_uint16(shift_header, &header[header_bytes]);
header_bytes += 2;
}
while (header_bytes < 8 && header_bytes % 4 != 0) { // First cond needed to silence wrong GCC warning.
header[header_bytes++] = 0;
}
for (uint32_t i = 0; i < header_bytes; i++) {
data.push_back(header[i]);
}
if (temp_packets.size() == 1) {
temp_packets.clear();
validated_packet_count = 0;
return; //only header stored, nothing else to do
}
uint32_t bit_buffer = 0;
uint32_t bits_used = 0;
for (uint32_t i = 1; i < temp_packets.size(); i++) {
uint32_t frame_delta = temp_packets[i].frame - temp_packets[i - 1].frame;
_push_bits(data, bit_buffer, bits_used, frame_delta, max_frame_delta_shift);
for (uint32_t j = 0; j < components; j++) {
if (max_shifts[j] == 0) {
continue; // Zero delta, do not store
}
int32_t delta = _compute_delta16_signed(temp_packets[i - 1].data[j], temp_packets[i].data[j]);
ERR_FAIL_COND(delta < -32768 || delta > 32767); // Safety check.
uint16_t deltau;
if (delta < 0) {
deltau = (ABS(delta) - 1) | (1 << max_shifts[j]);
} else {
deltau = delta;
}
_push_bits(data, bit_buffer, bits_used, deltau, max_shifts[j] + 1); // Include sign bit
}
}
if (bits_used != 0) {
ERR_FAIL_COND(bit_buffer > 0xFF); // Safety check.
data.push_back(bit_buffer);
}
while (data.size() % 4 != 0) {
data.push_back(0); //pad to align with 4
}
temp_packets.clear();
validated_packet_count = 0;
#ifdef DEBUG_PACKET_PUSH
ERR_FAIL_COND((data.size() - debug_data_size) != debug_packet_push);
#endif
}
};
struct AnimationCompressionTimeState {
struct Packet {
uint32_t frame;
uint32_t offset;
uint32_t count;
};
LocalVector<Packet> packets;
//used for rollback
int32_t key_index = 0;
int32_t validated_packet_count = 0;
int32_t validated_key_index = -1;
bool needs_start_frame = false;
};
Vector3i Animation::_compress_key(uint32_t p_track, const AABB &p_bounds, int32_t p_key, float p_time) {
Vector3i values;
TrackType tt = track_get_type(p_track);
switch (tt) {
case TYPE_POSITION_3D: {
Vector3 pos;
if (p_key >= 0) {
position_track_get_key(p_track, p_key, &pos);
} else {
try_position_track_interpolate(p_track, p_time, &pos);
}
pos = (pos - p_bounds.position) / p_bounds.size;
for (int j = 0; j < 3; j++) {
values[j] = CLAMP(int32_t(pos[j] * 65535.0), 0, 65535);
}
} break;
case TYPE_ROTATION_3D: {
Quaternion rot;
if (p_key >= 0) {
rotation_track_get_key(p_track, p_key, &rot);
} else {
try_rotation_track_interpolate(p_track, p_time, &rot);
}
Vector3 axis = rot.get_axis();
float angle = rot.get_angle();
angle = Math::fposmod(double(angle), double(Math_PI * 2.0));
Vector2 oct = axis.octahedron_encode();
Vector3 rot_norm(oct.x, oct.y, angle / (Math_PI * 2.0)); // high resolution rotation in 0-1 angle.
for (int j = 0; j < 3; j++) {
values[j] = CLAMP(int32_t(rot_norm[j] * 65535.0), 0, 65535);
}
} break;
case TYPE_SCALE_3D: {
Vector3 scale;
if (p_key >= 0) {
scale_track_get_key(p_track, p_key, &scale);
} else {
try_scale_track_interpolate(p_track, p_time, &scale);
}
scale = (scale - p_bounds.position) / p_bounds.size;
for (int j = 0; j < 3; j++) {
values[j] = CLAMP(int32_t(scale[j] * 65535.0), 0, 65535);
}
} break;
case TYPE_BLEND_SHAPE: {
float blend;
if (p_key >= 0) {
blend_shape_track_get_key(p_track, p_key, &blend);
} else {
try_blend_shape_track_interpolate(p_track, p_time, &blend);
}
blend = (blend / float(Compression::BLEND_SHAPE_RANGE)) * 0.5 + 0.5;
values[0] = CLAMP(int32_t(blend * 65535.0), 0, 65535);
} break;
default: {
ERR_FAIL_V(Vector3i()); // Safety check.
} break;
}
return values;
}
struct AnimationCompressionBufferBitsRead {
uint32_t buffer = 0;
uint32_t used = 0;
const uint8_t *src_data = nullptr;
_FORCE_INLINE_ uint32_t read(uint32_t p_bits) {
uint32_t output = 0;
uint32_t written = 0;
while (p_bits > 0) {
if (used == 0) {
used = 8;
buffer = *src_data;
src_data++;
}
uint32_t to_write = MIN(used, p_bits);
output |= (buffer & ((1 << to_write) - 1)) << written;
buffer >>= to_write;
used -= to_write;
p_bits -= to_write;
written += to_write;
}
return output;
}
};
void Animation::compress(uint32_t p_page_size, uint32_t p_fps, float p_split_tolerance) {
ERR_FAIL_COND_MSG(compression.enabled, "This animation is already compressed");
p_split_tolerance = CLAMP(p_split_tolerance, 1.1, 8.0);
compression.pages.clear();
uint32_t base_page_size = 0; // Before compressing pages, compute how large the "end page" datablock is.
LocalVector<uint32_t> tracks_to_compress;
LocalVector<AABB> track_bounds;
const uint32_t time_packet_size = 4;
const uint32_t track_header_size = 4 + 4 + 4; // pointer to time (4 bytes), amount of time keys (4 bytes) pointer to track data (4 bytes)
for (int i = 0; i < get_track_count(); i++) {
TrackType type = track_get_type(i);
if (type != TYPE_POSITION_3D && type != TYPE_ROTATION_3D && type != TYPE_SCALE_3D && type != TYPE_BLEND_SHAPE) {
continue;
}
if (track_get_key_count(i) == 0) {
continue; //do not compress, no keys
}
base_page_size += track_header_size; //pointer to beginning of each track timeline and amount of time keys
base_page_size += time_packet_size; //for end of track time marker
base_page_size += (type == TYPE_BLEND_SHAPE) ? 4 : 8; // at least the end of track packet (at much 8 bytes). This could be less, but have to be pessimistic.
tracks_to_compress.push_back(i);
AABB bounds;
if (type == TYPE_POSITION_3D) {
AABB aabb;
int kcount = track_get_key_count(i);
for (int j = 0; j < kcount; j++) {
Vector3 pos;
position_track_get_key(i, j, &pos);
if (j == 0) {
aabb.position = pos;
} else {
aabb.expand_to(pos);
}
}
for (int j = 0; j < 3; j++) {
// Can't have zero.
if (aabb.size[j] < CMP_EPSILON) {
aabb.size[j] = CMP_EPSILON;
}
}
bounds = aabb;
}
if (type == TYPE_SCALE_3D) {
AABB aabb;
int kcount = track_get_key_count(i);
for (int j = 0; j < kcount; j++) {
Vector3 scale;
scale_track_get_key(i, j, &scale);
if (j == 0) {
aabb.position = scale;
} else {
aabb.expand_to(scale);
}
}
for (int j = 0; j < 3; j++) {
// Can't have zero.
if (aabb.size[j] < CMP_EPSILON) {
aabb.size[j] = CMP_EPSILON;
}
}
bounds = aabb;
}
track_bounds.push_back(bounds);
}
if (tracks_to_compress.size() == 0) {
return; //nothing to compress
}
print_animc("Anim Compression:");
print_animc("-----------------");
print_animc("Tracks to compress: " + itos(tracks_to_compress.size()));
uint32_t current_frame = 0;
uint32_t base_page_frame = 0;
double frame_len = 1.0 / double(p_fps);
const uint32_t max_frames_per_page = 65536;
print_animc("Frame Len: " + rtos(frame_len));
LocalVector<AnimationCompressionDataState> data_tracks;
LocalVector<AnimationCompressionTimeState> time_tracks;
data_tracks.resize(tracks_to_compress.size());
time_tracks.resize(tracks_to_compress.size());
uint32_t needed_min_page_size = base_page_size;
for (uint32_t i = 0; i < data_tracks.size(); i++) {
data_tracks[i].split_tolerance = p_split_tolerance;
if (track_get_type(tracks_to_compress[i]) == TYPE_BLEND_SHAPE) {
data_tracks[i].components = 1;
} else {
data_tracks[i].components = 3;
}
needed_min_page_size += data_tracks[i].data.size() + data_tracks[i].get_temp_packet_size();
}
for (uint32_t i = 0; i < time_tracks.size(); i++) {
needed_min_page_size += time_tracks[i].packets.size() * 4; // time packet is 32 bits
}
ERR_FAIL_COND_MSG(p_page_size < needed_min_page_size, "Cannot compress with the given page size");
while (true) {
// Begin by finding the keyframe in all tracks with the time closest to the current time
const uint32_t FRAME_MAX = 0xFFFFFFFF;
const int32_t NO_TRACK_FOUND = -1;
uint32_t best_frame = FRAME_MAX;
uint32_t best_invalid_frame = FRAME_MAX;
int32_t best_frame_track = NO_TRACK_FOUND; // Default is -1, which means all keyframes for this page are exhausted.
bool start_frame = false;
for (uint32_t i = 0; i < tracks_to_compress.size(); i++) {
uint32_t uncomp_track = tracks_to_compress[i];
if (time_tracks[i].key_index == track_get_key_count(uncomp_track)) {
if (time_tracks[i].needs_start_frame) {
start_frame = true;
best_frame = base_page_frame;
best_frame_track = i;
time_tracks[i].needs_start_frame = false;
break;
} else {
continue; // This track is exhausted (all keys were added already), don't consider.
}
}
double key_time = track_get_key_time(uncomp_track, time_tracks[i].key_index);
double result = key_time / frame_len;
uint32_t key_frame = Math::fast_ftoi(result);
if (time_tracks[i].needs_start_frame && key_frame > base_page_frame) {
start_frame = true;
best_frame = base_page_frame;
best_frame_track = i;
time_tracks[i].needs_start_frame = false;
break;
}
ERR_FAIL_COND(key_frame < base_page_frame); // Safety check, should never happen.
if (key_frame - base_page_frame >= max_frames_per_page) {
// Invalid because beyond the max frames allowed per page
best_invalid_frame = MIN(best_invalid_frame, key_frame);
} else if (key_frame < best_frame) {
best_frame = key_frame;
best_frame_track = i;
}
}
print_animc("*KEY*: Current Frame: " + itos(current_frame) + " Best Frame: " + rtos(best_frame) + " Best Track: " + itos(best_frame_track) + " Start: " + String(start_frame ? "true" : "false"));
if (!start_frame && best_frame > current_frame) {
// Any case where the current frame advanced, either because nothing was found or because something was found greater than the current one.
print_animc("\tAdvance Condition.");
bool rollback = false;
// The frame has advanced, time to validate the previous frame
uint32_t current_page_size = base_page_size;
for (const AnimationCompressionDataState &state : data_tracks) {
uint32_t track_size = state.data.size(); // track size
track_size += state.get_temp_packet_size(); // Add the temporary data
if (track_size > Compression::MAX_DATA_TRACK_SIZE) {
rollback = true; //track to large, time track can't point to keys any longer, because key offset is 12 bits
break;
}
current_page_size += track_size;
}
for (const AnimationCompressionTimeState &state : time_tracks) {
current_page_size += state.packets.size() * 4; // time packet is 32 bits
}
if (!rollback && current_page_size > p_page_size) {
rollback = true;
}
print_animc("\tCurrent Page Size: " + itos(current_page_size) + "/" + itos(p_page_size) + " Rollback? " + String(rollback ? "YES!" : "no"));
if (rollback) {
// Not valid any longer, so rollback and commit page
for (AnimationCompressionDataState &state : data_tracks) {
state.temp_packets.resize(state.validated_packet_count);
}
for (AnimationCompressionTimeState &state : time_tracks) {
state.key_index = state.validated_key_index; //rollback key
state.packets.resize(state.validated_packet_count);
}
} else {
// All valid, so save rollback information
for (AnimationCompressionDataState &state : data_tracks) {
state.validated_packet_count = state.temp_packets.size();
}
for (AnimationCompressionTimeState &state : time_tracks) {
state.validated_key_index = state.key_index;
state.validated_packet_count = state.packets.size();
}
// Accept this frame as the frame being processed (as long as it exists)
if (best_frame != FRAME_MAX) {
current_frame = best_frame;
print_animc("\tValidated, New Current Frame: " + itos(current_frame));
}
}
if (rollback || best_frame == FRAME_MAX) {
// Commit the page if had to rollback or if no track was found
print_animc("\tCommiting page...");
// The end frame for the page depends entirely on whether its valid or
// no more keys were found.
// If not valid, then the end frame is the current frame (as this means the current frame is being rolled back
// If valid, then the end frame is the next invalid one (in case more frames exist), or the current frame in case no more frames exist.
uint32_t page_end_frame = (rollback || best_frame == FRAME_MAX) ? current_frame : best_invalid_frame;
print_animc("\tEnd Frame: " + itos(page_end_frame) + ", " + rtos(page_end_frame * frame_len) + "s");
// Add finalizer frames and commit pending tracks
uint32_t finalizer_local_frame = page_end_frame - base_page_frame;
uint32_t total_page_size = 0;
for (uint32_t i = 0; i < data_tracks.size(); i++) {
if (data_tracks[i].temp_packets.size() == 0 || (data_tracks[i].temp_packets[data_tracks[i].temp_packets.size() - 1].frame) < finalizer_local_frame) {
// Add finalizer frame if it makes sense
Vector3i values = _compress_key(tracks_to_compress[i], track_bounds[i], -1, page_end_frame * frame_len);
bool first_key = data_tracks[i].insert_key(finalizer_local_frame, values);
if (first_key) {
AnimationCompressionTimeState::Packet p;
p.count = 1;
p.frame = finalizer_local_frame;
p.offset = data_tracks[i].data.size();
time_tracks[i].packets.push_back(p);
} else {
ERR_FAIL_COND(time_tracks[i].packets.is_empty());
time_tracks[i].packets[time_tracks[i].packets.size() - 1].count++;
}
}
data_tracks[i].commit_temp_packets();
total_page_size += data_tracks[i].data.size();
total_page_size += time_tracks[i].packets.size() * 4;
total_page_size += track_header_size;
print_animc("\tTrack " + itos(i) + " time packets: " + itos(time_tracks[i].packets.size()) + " Packet data: " + itos(data_tracks[i].data.size()));
}
print_animc("\tTotal page Size: " + itos(total_page_size) + "/" + itos(p_page_size));
// Create Page
Vector<uint8_t> page_data;
page_data.resize(total_page_size);
{
uint8_t *page_ptr = page_data.ptrw();
uint32_t base_offset = data_tracks.size() * track_header_size;
for (uint32_t i = 0; i < data_tracks.size(); i++) {
encode_uint32(base_offset, page_ptr + (track_header_size * i + 0));
uint16_t *key_time_ptr = (uint16_t *)(page_ptr + base_offset);
for (uint32_t j = 0; j < time_tracks[i].packets.size(); j++) {
key_time_ptr[j * 2 + 0] = uint16_t(time_tracks[i].packets[j].frame);
uint16_t ptr = time_tracks[i].packets[j].offset / 4;
ptr |= (time_tracks[i].packets[j].count - 1) << 12;
key_time_ptr[j * 2 + 1] = ptr;
base_offset += 4;
}
encode_uint32(time_tracks[i].packets.size(), page_ptr + (track_header_size * i + 4));
encode_uint32(base_offset, page_ptr + (track_header_size * i + 8));
memcpy(page_ptr + base_offset, data_tracks[i].data.ptr(), data_tracks[i].data.size());
base_offset += data_tracks[i].data.size();
//reset track
data_tracks[i].data.clear();
data_tracks[i].temp_packets.clear();
data_tracks[i].validated_packet_count = -1;
time_tracks[i].needs_start_frame = true; //Not required the first time, but from now on it is.
time_tracks[i].packets.clear();
time_tracks[i].validated_key_index = -1;
time_tracks[i].validated_packet_count = 0;
}
}
Compression::Page page;
page.data = page_data;
page.time_offset = base_page_frame * frame_len;
compression.pages.push_back(page);
if (!rollback && best_invalid_frame == FRAME_MAX) {
break; // No more pages to add.
}
current_frame = page_end_frame;
base_page_frame = page_end_frame;
continue; // Start over
}
}
// A key was found for the current frame and all is ok
uint32_t comp_track = best_frame_track;
Vector3i values;
if (start_frame) {
// Interpolate
values = _compress_key(tracks_to_compress[comp_track], track_bounds[comp_track], -1, base_page_frame * frame_len);
} else {
uint32_t key = time_tracks[comp_track].key_index;
values = _compress_key(tracks_to_compress[comp_track], track_bounds[comp_track], key);
time_tracks[comp_track].key_index++; //goto next key (but could be rolled back if beyond page size).
}
bool first_key = data_tracks[comp_track].insert_key(best_frame - base_page_frame, values);
if (first_key) {
AnimationCompressionTimeState::Packet p;
p.count = 1;
p.frame = best_frame - base_page_frame;
p.offset = data_tracks[comp_track].data.size();
time_tracks[comp_track].packets.push_back(p);
} else {
ERR_CONTINUE(time_tracks[comp_track].packets.is_empty());
time_tracks[comp_track].packets[time_tracks[comp_track].packets.size() - 1].count++;
}
}
compression.bounds = track_bounds;
compression.fps = p_fps;
compression.enabled = true;
for (uint32_t i = 0; i < tracks_to_compress.size(); i++) {
Track *t = tracks[tracks_to_compress[i]];
t->interpolation = INTERPOLATION_LINEAR; //only linear supported
switch (t->type) {
case TYPE_POSITION_3D: {
PositionTrack *tt = static_cast<PositionTrack *>(t);
tt->positions.clear();
tt->compressed_track = i;
} break;
case TYPE_ROTATION_3D: {
RotationTrack *rt = static_cast<RotationTrack *>(t);
rt->rotations.clear();
rt->compressed_track = i;
} break;
case TYPE_SCALE_3D: {
ScaleTrack *st = static_cast<ScaleTrack *>(t);
st->scales.clear();
st->compressed_track = i;
print_line("Scale Bounds " + itos(i) + ": " + track_bounds[i]);
} break;
case TYPE_BLEND_SHAPE: {
BlendShapeTrack *bst = static_cast<BlendShapeTrack *>(t);
bst->blend_shapes.clear();
bst->compressed_track = i;
} break;
default: {
}
}
}
#if 1
uint32_t orig_size = 0;
for (int i = 0; i < get_track_count(); i++) {
switch (track_get_type(i)) {
case TYPE_SCALE_3D:
case TYPE_POSITION_3D: {
orig_size += sizeof(TKey<Vector3>) * track_get_key_count(i);
} break;
case TYPE_ROTATION_3D: {
orig_size += sizeof(TKey<Quaternion>) * track_get_key_count(i);
} break;
case TYPE_BLEND_SHAPE: {
orig_size += sizeof(TKey<float>) * track_get_key_count(i);
} break;
default: {
}
}
}
uint32_t new_size = 0;
for (const Compression::Page &page : compression.pages) {
new_size += page.data.size();
}
print_line("Original size: " + itos(orig_size) + " - Compressed size: " + itos(new_size) + " " + String::num(float(new_size) / float(orig_size) * 100, 2) + "% pages: " + itos(compression.pages.size()));
#endif
}
bool Animation::_rotation_interpolate_compressed(uint32_t p_compressed_track, double p_time, Quaternion &r_ret) const {
Vector3i current;
Vector3i next;
double time_current;
double time_next;
if (!_fetch_compressed<3>(p_compressed_track, p_time, current, time_current, next, time_next)) {
return false; //some sort of problem
}
if (time_current >= p_time || time_current == time_next) {
r_ret = _uncompress_quaternion(current);
} else if (p_time >= time_next) {
r_ret = _uncompress_quaternion(next);
} else {
double c = (p_time - time_current) / (time_next - time_current);
Quaternion from = _uncompress_quaternion(current);
Quaternion to = _uncompress_quaternion(next);
r_ret = from.slerp(to, c);
}
return true;
}
bool Animation::_pos_scale_interpolate_compressed(uint32_t p_compressed_track, double p_time, Vector3 &r_ret) const {
Vector3i current;
Vector3i next;
double time_current;
double time_next;
if (!_fetch_compressed<3>(p_compressed_track, p_time, current, time_current, next, time_next)) {
return false; //some sort of problem
}
if (time_current >= p_time || time_current == time_next) {
r_ret = _uncompress_pos_scale(p_compressed_track, current);
} else if (p_time >= time_next) {
r_ret = _uncompress_pos_scale(p_compressed_track, next);
} else {
double c = (p_time - time_current) / (time_next - time_current);
Vector3 from = _uncompress_pos_scale(p_compressed_track, current);
Vector3 to = _uncompress_pos_scale(p_compressed_track, next);
r_ret = from.lerp(to, c);
}
return true;
}
bool Animation::_blend_shape_interpolate_compressed(uint32_t p_compressed_track, double p_time, float &r_ret) const {
Vector3i current;
Vector3i next;
double time_current;
double time_next;
if (!_fetch_compressed<1>(p_compressed_track, p_time, current, time_current, next, time_next)) {
return false; //some sort of problem
}
if (time_current >= p_time || time_current == time_next) {
r_ret = _uncompress_blend_shape(current);
} else if (p_time >= time_next) {
r_ret = _uncompress_blend_shape(next);
} else {
float c = (p_time - time_current) / (time_next - time_current);
float from = _uncompress_blend_shape(current);
float to = _uncompress_blend_shape(next);
r_ret = Math::lerp(from, to, c);
}
return true;
}
template <uint32_t COMPONENTS>
bool Animation::_fetch_compressed(uint32_t p_compressed_track, double p_time, Vector3i &r_current_value, double &r_current_time, Vector3i &r_next_value, double &r_next_time, uint32_t *key_index) const {
ERR_FAIL_COND_V(!compression.enabled, false);
ERR_FAIL_UNSIGNED_INDEX_V(p_compressed_track, compression.bounds.size(), false);
p_time = CLAMP(p_time, 0, length);
if (key_index) {
*key_index = 0;
}
double frame_to_sec = 1.0 / double(compression.fps);
int32_t page_index = -1;
for (uint32_t i = 0; i < compression.pages.size(); i++) {
if (compression.pages[i].time_offset > p_time) {
break;
}
page_index = i;
}
ERR_FAIL_COND_V(page_index == -1, false); //should not happen
double page_base_time = compression.pages[page_index].time_offset;
const uint8_t *page_data = compression.pages[page_index].data.ptr();
// Little endian assumed. No major big endian hardware exists any longer, but in case it does it will need to be supported.
const uint32_t *indices = (const uint32_t *)page_data;
const uint16_t *time_keys = (const uint16_t *)&page_data[indices[p_compressed_track * 3 + 0]];
uint32_t time_key_count = indices[p_compressed_track * 3 + 1];
int32_t packet_idx = 0;
double packet_time = double(time_keys[0]) * frame_to_sec + page_base_time;
uint32_t base_frame = time_keys[0];
for (uint32_t i = 1; i < time_key_count; i++) {
uint32_t f = time_keys[i * 2 + 0];
double frame_time = double(f) * frame_to_sec + page_base_time;
if (frame_time > p_time) {
break;
}
if (key_index) {
(*key_index) += (time_keys[(i - 1) * 2 + 1] >> 12) + 1;
}
packet_idx = i;
packet_time = frame_time;
base_frame = f;
}
const uint8_t *data_keys_base = (const uint8_t *)&page_data[indices[p_compressed_track * 3 + 2]];
uint16_t time_key_data = time_keys[packet_idx * 2 + 1];
uint32_t data_offset = (time_key_data & 0xFFF) * 4; // lower 12 bits
uint32_t data_count = (time_key_data >> 12) + 1;
const uint16_t *data_key = (const uint16_t *)(data_keys_base + data_offset);
uint16_t decode[COMPONENTS];
uint16_t decode_next[COMPONENTS];
for (uint32_t i = 0; i < COMPONENTS; i++) {
decode[i] = data_key[i];
decode_next[i] = data_key[i];
}
double next_time = packet_time;
if (p_time > packet_time) { // If its equal or less, then don't bother
if (data_count > 1) {
//decode forward
uint32_t bit_width[COMPONENTS];
for (uint32_t i = 0; i < COMPONENTS; i++) {
bit_width[i] = (data_key[COMPONENTS] >> (i * 4)) & 0xF;
}
uint32_t frame_bit_width = (data_key[COMPONENTS] >> 12) + 1;
AnimationCompressionBufferBitsRead buffer;
buffer.src_data = (const uint8_t *)&data_key[COMPONENTS + 1];
for (uint32_t i = 1; i < data_count; i++) {
uint32_t frame_delta = buffer.read(frame_bit_width);
base_frame += frame_delta;
for (uint32_t j = 0; j < COMPONENTS; j++) {
if (bit_width[j] == 0) {
continue; // do none
}
uint32_t valueu = buffer.read(bit_width[j] + 1);
bool sign = valueu & (1 << bit_width[j]);
int16_t value = valueu & ((1 << bit_width[j]) - 1);
if (sign) {
value = -value - 1;
}
decode_next[j] += value;
}
next_time = double(base_frame) * frame_to_sec + page_base_time;
if (p_time < next_time) {
break;
}
packet_time = next_time;
for (uint32_t j = 0; j < COMPONENTS; j++) {
decode[j] = decode_next[j];
}
if (key_index) {
(*key_index)++;
}
}
}
if (p_time > next_time) { // > instead of >= because if its equal, then it will be properly interpolated anyway
// So, the last frame found still has a time that is less than the required frame,
// will have to interpolate with the first frame of the next timekey.
if ((uint32_t)packet_idx < time_key_count - 1) { // Safety check but should not matter much, otherwise current next packet is last packet.
uint16_t time_key_data_next = time_keys[(packet_idx + 1) * 2 + 1];
uint32_t data_offset_next = (time_key_data_next & 0xFFF) * 4; // Lower 12 bits
const uint16_t *data_key_next = (const uint16_t *)(data_keys_base + data_offset_next);
base_frame = time_keys[(packet_idx + 1) * 2 + 0];
next_time = double(base_frame) * frame_to_sec + page_base_time;
for (uint32_t i = 0; i < COMPONENTS; i++) {
decode_next[i] = data_key_next[i];
}
}
}
}
r_current_time = packet_time;
r_next_time = next_time;
for (uint32_t i = 0; i < COMPONENTS; i++) {
r_current_value[i] = decode[i];
r_next_value[i] = decode_next[i];
}
return true;
}
template <uint32_t COMPONENTS>
void Animation::_get_compressed_key_indices_in_range(uint32_t p_compressed_track, double p_time, double p_delta, List<int> *r_indices) const {
ERR_FAIL_COND(!compression.enabled);
ERR_FAIL_UNSIGNED_INDEX(p_compressed_track, compression.bounds.size());
double frame_to_sec = 1.0 / double(compression.fps);
uint32_t key_index = 0;
for (uint32_t p = 0; p < compression.pages.size(); p++) {
if (compression.pages[p].time_offset >= p_time + p_delta) {
// Page beyond range
return;
}
// Page within range
uint32_t page_index = p;
double page_base_time = compression.pages[page_index].time_offset;
const uint8_t *page_data = compression.pages[page_index].data.ptr();
// Little endian assumed. No major big endian hardware exists any longer, but in case it does it will need to be supported.
const uint32_t *indices = (const uint32_t *)page_data;
const uint16_t *time_keys = (const uint16_t *)&page_data[indices[p_compressed_track * 3 + 0]];
uint32_t time_key_count = indices[p_compressed_track * 3 + 1];
for (uint32_t i = 0; i < time_key_count; i++) {
uint32_t f = time_keys[i * 2 + 0];
double frame_time = f * frame_to_sec + page_base_time;
if (frame_time >= p_time + p_delta) {
return;
} else if (frame_time >= p_time) {
r_indices->push_back(key_index);
}
key_index++;
const uint8_t *data_keys_base = (const uint8_t *)&page_data[indices[p_compressed_track * 3 + 2]];
uint16_t time_key_data = time_keys[i * 2 + 1];
uint32_t data_offset = (time_key_data & 0xFFF) * 4; // lower 12 bits
uint32_t data_count = (time_key_data >> 12) + 1;
const uint16_t *data_key = (const uint16_t *)(data_keys_base + data_offset);
if (data_count > 1) {
//decode forward
uint32_t bit_width[COMPONENTS];
for (uint32_t j = 0; j < COMPONENTS; j++) {
bit_width[j] = (data_key[COMPONENTS] >> (j * 4)) & 0xF;
}
uint32_t frame_bit_width = (data_key[COMPONENTS] >> 12) + 1;
AnimationCompressionBufferBitsRead buffer;
buffer.src_data = (const uint8_t *)&data_key[COMPONENTS + 1];
for (uint32_t j = 1; j < data_count; j++) {
uint32_t frame_delta = buffer.read(frame_bit_width);
f += frame_delta;
frame_time = f * frame_to_sec + page_base_time;
if (frame_time >= p_time + p_delta) {
return;
} else if (frame_time >= p_time) {
r_indices->push_back(key_index);
}
for (uint32_t k = 0; k < COMPONENTS; k++) {
if (bit_width[k] == 0) {
continue; // do none
}
buffer.read(bit_width[k] + 1); // skip
}
key_index++;
}
}
}
}
}
int Animation::_get_compressed_key_count(uint32_t p_compressed_track) const {
ERR_FAIL_COND_V(!compression.enabled, -1);
ERR_FAIL_UNSIGNED_INDEX_V(p_compressed_track, compression.bounds.size(), -1);
int key_count = 0;
for (const Compression::Page &page : compression.pages) {
const uint8_t *page_data = page.data.ptr();
// Little endian assumed. No major big endian hardware exists any longer, but in case it does it will need to be supported.
const uint32_t *indices = (const uint32_t *)page_data;
const uint16_t *time_keys = (const uint16_t *)&page_data[indices[p_compressed_track * 3 + 0]];
uint32_t time_key_count = indices[p_compressed_track * 3 + 1];
for (uint32_t j = 0; j < time_key_count; j++) {
key_count += (time_keys[j * 2 + 1] >> 12) + 1;
}
}
return key_count;
}
Quaternion Animation::_uncompress_quaternion(const Vector3i &p_value) const {
Vector3 axis = Vector3::octahedron_decode(Vector2(float(p_value.x) / 65535.0, float(p_value.y) / 65535.0));
float angle = (float(p_value.z) / 65535.0) * 2.0 * Math_PI;
return Quaternion(axis, angle);
}
Vector3 Animation::_uncompress_pos_scale(uint32_t p_compressed_track, const Vector3i &p_value) const {
Vector3 pos_norm(float(p_value.x) / 65535.0, float(p_value.y) / 65535.0, float(p_value.z) / 65535.0);
return compression.bounds[p_compressed_track].position + pos_norm * compression.bounds[p_compressed_track].size;
}
float Animation::_uncompress_blend_shape(const Vector3i &p_value) const {
float bsn = float(p_value.x) / 65535.0;
return (bsn * 2.0 - 1.0) * float(Compression::BLEND_SHAPE_RANGE);
}
template <uint32_t COMPONENTS>
bool Animation::_fetch_compressed_by_index(uint32_t p_compressed_track, int p_index, Vector3i &r_value, double &r_time) const {
ERR_FAIL_COND_V(!compression.enabled, false);
ERR_FAIL_UNSIGNED_INDEX_V(p_compressed_track, compression.bounds.size(), false);
for (const Compression::Page &page : compression.pages) {
const uint8_t *page_data = page.data.ptr();
// Little endian assumed. No major big endian hardware exists any longer, but in case it does it will need to be supported.
const uint32_t *indices = (const uint32_t *)page_data;
const uint16_t *time_keys = (const uint16_t *)&page_data[indices[p_compressed_track * 3 + 0]];
uint32_t time_key_count = indices[p_compressed_track * 3 + 1];
const uint8_t *data_keys_base = (const uint8_t *)&page_data[indices[p_compressed_track * 3 + 2]];
for (uint32_t j = 0; j < time_key_count; j++) {
uint32_t subkeys = (time_keys[j * 2 + 1] >> 12) + 1;
if ((uint32_t)p_index < subkeys) {
uint16_t data_offset = (time_keys[j * 2 + 1] & 0xFFF) * 4;
const uint16_t *data_key = (const uint16_t *)(data_keys_base + data_offset);
uint16_t frame = time_keys[j * 2 + 0];
uint16_t decode[COMPONENTS];
for (uint32_t k = 0; k < COMPONENTS; k++) {
decode[k] = data_key[k];
}
if (p_index > 0) {
uint32_t bit_width[COMPONENTS];
for (uint32_t k = 0; k < COMPONENTS; k++) {
bit_width[k] = (data_key[COMPONENTS] >> (k * 4)) & 0xF;
}
uint32_t frame_bit_width = (data_key[COMPONENTS] >> 12) + 1;
AnimationCompressionBufferBitsRead buffer;
buffer.src_data = (const uint8_t *)&data_key[COMPONENTS + 1];
for (int k = 0; k < p_index; k++) {
uint32_t frame_delta = buffer.read(frame_bit_width);
frame += frame_delta;
for (uint32_t l = 0; l < COMPONENTS; l++) {
if (bit_width[l] == 0) {
continue; // do none
}
uint32_t valueu = buffer.read(bit_width[l] + 1);
bool sign = valueu & (1 << bit_width[l]);
int16_t value = valueu & ((1 << bit_width[l]) - 1);
if (sign) {
value = -value - 1;
}
decode[l] += value;
}
}
}
r_time = page.time_offset + double(frame) / double(compression.fps);
for (uint32_t l = 0; l < COMPONENTS; l++) {
r_value[l] = decode[l];
}
return true;
} else {
p_index -= subkeys;
}
}
}
return false;
}
// Helper math functions for Variant.
bool Animation::is_variant_interpolatable(const Variant p_value) {
Variant::Type type = p_value.get_type();
return (type >= Variant::BOOL && type <= Variant::STRING_NAME) || type == Variant::ARRAY || type >= Variant::PACKED_INT32_ARRAY; // PackedByteArray is unsigned, so it would be better to ignore since blending uses float.
}
Variant Animation::cast_to_blendwise(const Variant p_value) {
switch (p_value.get_type()) {
case Variant::BOOL:
case Variant::INT: {
return p_value.operator double();
} break;
case Variant::STRING:
case Variant::STRING_NAME: {
return string_to_array(p_value);
} break;
case Variant::RECT2I: {
return p_value.operator Rect2();
} break;
case Variant::VECTOR2I: {
return p_value.operator Vector2();
} break;
case Variant::VECTOR3I: {
return p_value.operator Vector3();
} break;
case Variant::VECTOR4I: {
return p_value.operator Vector4();
} break;
case Variant::PACKED_INT32_ARRAY: {
return p_value.operator PackedFloat32Array();
} break;
case Variant::PACKED_INT64_ARRAY: {
return p_value.operator PackedFloat64Array();
} break;
default: {
} break;
}
return p_value;
}
Variant Animation::cast_from_blendwise(const Variant p_value, const Variant::Type p_type) {
switch (p_type) {
case Variant::BOOL: {
return p_value.operator real_t() >= 0.5;
} break;
case Variant::INT: {
return (int64_t)Math::round(p_value.operator double());
} break;
case Variant::STRING: {
return array_to_string(p_value);
} break;
case Variant::STRING_NAME: {
return StringName(array_to_string(p_value));
} break;
case Variant::RECT2I: {
return Rect2i(p_value.operator Rect2().round());
} break;
case Variant::VECTOR2I: {
return Vector2i(p_value.operator Vector2().round());
} break;
case Variant::VECTOR3I: {
return Vector3i(p_value.operator Vector3().round());
} break;
case Variant::VECTOR4I: {
return Vector4i(p_value.operator Vector4().round());
} break;
case Variant::PACKED_INT32_ARRAY: {
PackedFloat32Array old_val = p_value.operator PackedFloat32Array();
PackedInt32Array new_val;
new_val.resize(old_val.size());
int *new_val_w = new_val.ptrw();
for (int i = 0; i < old_val.size(); i++) {
new_val_w[i] = (int32_t)Math::round(old_val[i]);
}
return new_val;
} break;
case Variant::PACKED_INT64_ARRAY: {
PackedFloat64Array old_val = p_value.operator PackedFloat64Array();
PackedInt64Array new_val;
for (int i = 0; i < old_val.size(); i++) {
new_val.push_back((int64_t)Math::round(old_val[i]));
}
return new_val;
} break;
default: {
} break;
}
return p_value;
}
Variant Animation::string_to_array(const Variant p_value) {
if (!p_value.is_string()) {
return p_value;
};
const String &str = p_value.operator String();
PackedFloat32Array arr;
for (int i = 0; i < str.length(); i++) {
arr.push_back((float)str[i]);
}
return arr;
}
Variant Animation::array_to_string(const Variant p_value) {
if (!p_value.is_array()) {
return p_value;
};
const PackedFloat32Array &arr = p_value.operator PackedFloat32Array();
String str;
for (int i = 0; i < arr.size(); i++) {
char32_t c = (char32_t)Math::round(arr[i]);
if (c == 0 || (c & 0xfffff800) == 0xd800 || c > 0x10ffff) {
c = ' ';
}
str += c;
}
return str;
}
Variant Animation::add_variant(const Variant &a, const Variant &b) {
if (a.get_type() != b.get_type()) {
if (a.is_num() && b.is_num()) {
return add_variant(cast_to_blendwise(a), cast_to_blendwise(b));
} else if (!a.is_array()) {
return a;
}
}
switch (a.get_type()) {
case Variant::NIL: {
return Variant();
} break;
case Variant::FLOAT: {
return (a.operator double()) + (b.operator double());
} break;
case Variant::RECT2: {
const Rect2 ra = a.operator Rect2();
const Rect2 rb = b.operator Rect2();
return Rect2(ra.position + rb.position, ra.size + rb.size);
} break;
case Variant::PLANE: {
const Plane pa = a.operator Plane();
const Plane pb = b.operator Plane();
return Plane(pa.normal + pb.normal, pa.d + pb.d);
} break;
case Variant::AABB: {
const ::AABB aa = a.operator ::AABB();
const ::AABB ab = b.operator ::AABB();
return ::AABB(aa.position + ab.position, aa.size + ab.size);
} break;
case Variant::BASIS: {
return (a.operator Basis()) * (b.operator Basis());
} break;
case Variant::QUATERNION: {
return (a.operator Quaternion()) * (b.operator Quaternion());
} break;
case Variant::TRANSFORM2D: {
return (a.operator Transform2D()) * (b.operator Transform2D());
} break;
case Variant::TRANSFORM3D: {
return (a.operator Transform3D()) * (b.operator Transform3D());
} break;
case Variant::INT:
case Variant::RECT2I:
case Variant::VECTOR2I:
case Variant::VECTOR3I:
case Variant::VECTOR4I:
case Variant::PACKED_INT32_ARRAY:
case Variant::PACKED_INT64_ARRAY: {
// Fallback the interpolatable value which needs casting.
return cast_from_blendwise(add_variant(cast_to_blendwise(a), cast_to_blendwise(b)), a.get_type());
} break;
case Variant::BOOL:
case Variant::STRING:
case Variant::STRING_NAME: {
// Specialized for Tween.
return b;
} break;
case Variant::PACKED_BYTE_ARRAY: {
// Skip.
} break;
default: {
if (a.is_array()) {
const Array arr_a = a.operator Array();
const Array arr_b = b.operator Array();
int min_size = arr_a.size();
int max_size = arr_b.size();
bool is_a_larger = inform_variant_array(min_size, max_size);
Array result;
result.set_typed(MAX(arr_a.get_typed_builtin(), arr_b.get_typed_builtin()), StringName(), Variant());
result.resize(min_size);
int i = 0;
for (; i < min_size; i++) {
result[i] = add_variant(arr_a[i], arr_b[i]);
}
if (min_size != max_size) {
// Process with last element of the lesser array.
// This is pretty funny and bizarre, but artists like to use it for polygon animation.
Variant lesser_last;
result.resize(max_size);
if (is_a_larger) {
if (i > 0) {
lesser_last = arr_b[i - 1];
} else {
Variant vz = arr_a[i];
vz.zero();
lesser_last = vz;
}
for (; i < max_size; i++) {
result[i] = add_variant(arr_a[i], lesser_last);
}
} else {
if (i > 0) {
lesser_last = arr_a[i - 1];
} else {
Variant vz = arr_b[i];
vz.zero();
lesser_last = vz;
}
for (; i < max_size; i++) {
result[i] = add_variant(lesser_last, arr_b[i]);
}
}
}
return result;
}
} break;
}
return Variant::evaluate(Variant::OP_ADD, a, b);
}
Variant Animation::subtract_variant(const Variant &a, const Variant &b) {
if (a.get_type() != b.get_type()) {
if (a.is_num() && b.is_num()) {
return subtract_variant(cast_to_blendwise(a), cast_to_blendwise(b));
} else if (!a.is_array()) {
return a;
}
}
switch (a.get_type()) {
case Variant::NIL: {
return Variant();
} break;
case Variant::FLOAT: {
return (a.operator double()) - (b.operator double());
} break;
case Variant::RECT2: {
const Rect2 ra = a.operator Rect2();
const Rect2 rb = b.operator Rect2();
return Rect2(ra.position - rb.position, ra.size - rb.size);
} break;
case Variant::PLANE: {
const Plane pa = a.operator Plane();
const Plane pb = b.operator Plane();
return Plane(pa.normal - pb.normal, pa.d - pb.d);
} break;
case Variant::AABB: {
const ::AABB aa = a.operator ::AABB();
const ::AABB ab = b.operator ::AABB();
return ::AABB(aa.position - ab.position, aa.size - ab.size);
} break;
case Variant::BASIS: {
return (b.operator Basis()).inverse() * (a.operator Basis());
} break;
case Variant::QUATERNION: {
return (b.operator Quaternion()).inverse() * (a.operator Quaternion());
} break;
case Variant::TRANSFORM2D: {
return (b.operator Transform2D()).affine_inverse() * (a.operator Transform2D());
} break;
case Variant::TRANSFORM3D: {
return (b.operator Transform3D()).affine_inverse() * (a.operator Transform3D());
} break;
case Variant::INT:
case Variant::RECT2I:
case Variant::VECTOR2I:
case Variant::VECTOR3I:
case Variant::VECTOR4I:
case Variant::PACKED_INT32_ARRAY:
case Variant::PACKED_INT64_ARRAY: {
// Fallback the interpolatable value which needs casting.
return cast_from_blendwise(subtract_variant(cast_to_blendwise(a), cast_to_blendwise(b)), a.get_type());
} break;
case Variant::BOOL:
case Variant::STRING:
case Variant::STRING_NAME: {
// Specialized for Tween.
return a;
} break;
case Variant::PACKED_BYTE_ARRAY: {
// Skip.
} break;
default: {
if (a.is_array()) {
const Array arr_a = a.operator Array();
const Array arr_b = b.operator Array();
int min_size = arr_a.size();
int max_size = arr_b.size();
bool is_a_larger = inform_variant_array(min_size, max_size);
Array result;
result.set_typed(MAX(arr_a.get_typed_builtin(), arr_b.get_typed_builtin()), StringName(), Variant());
result.resize(min_size);
int i = 0;
for (; i < min_size; i++) {
result[i] = subtract_variant(arr_a[i], arr_b[i]);
}
if (min_size != max_size) {
// Process with last element of the lesser array.
// This is pretty funny and bizarre, but artists like to use it for polygon animation.
Variant lesser_last;
result.resize(max_size);
if (is_a_larger) {
if (i > 0) {
lesser_last = arr_b[i - 1];
} else {
Variant vz = arr_a[i];
vz.zero();
lesser_last = vz;
}
for (; i < max_size; i++) {
result[i] = subtract_variant(arr_a[i], lesser_last);
}
} else {
if (i > 0) {
lesser_last = arr_a[i - 1];
} else {
Variant vz = arr_b[i];
vz.zero();
lesser_last = vz;
}
for (; i < max_size; i++) {
result[i] = subtract_variant(lesser_last, arr_b[i]);
}
}
}
return result;
}
} break;
}
return Variant::evaluate(Variant::OP_SUBTRACT, a, b);
}
Variant Animation::blend_variant(const Variant &a, const Variant &b, float c) {
if (a.get_type() != b.get_type()) {
if (a.is_num() && b.is_num()) {
return blend_variant(cast_to_blendwise(a), cast_to_blendwise(b), c);
} else if (!a.is_array()) {
return a;
}
}
switch (a.get_type()) {
case Variant::NIL: {
return Variant();
} break;
case Variant::FLOAT: {
return (a.operator double()) + (b.operator double()) * c;
} break;
case Variant::VECTOR2: {
return (a.operator Vector2()) + (b.operator Vector2()) * c;
} break;
case Variant::RECT2: {
const Rect2 ra = a.operator Rect2();
const Rect2 rb = b.operator Rect2();
return Rect2(ra.position + rb.position * c, ra.size + rb.size * c);
} break;
case Variant::VECTOR3: {
return (a.operator Vector3()) + (b.operator Vector3()) * c;
} break;
case Variant::VECTOR4: {
return (a.operator Vector4()) + (b.operator Vector4()) * c;
} break;
case Variant::PLANE: {
const Plane pa = a.operator Plane();
const Plane pb = b.operator Plane();
return Plane(pa.normal + pb.normal * c, pa.d + pb.d * c);
} break;
case Variant::COLOR: {
return (a.operator Color()) + (b.operator Color()) * c;
} break;
case Variant::AABB: {
const ::AABB aa = a.operator ::AABB();
const ::AABB ab = b.operator ::AABB();
return ::AABB(aa.position + ab.position * c, aa.size + ab.size * c);
} break;
case Variant::BASIS: {
return (a.operator Basis()) + (b.operator Basis()) * c;
} break;
case Variant::QUATERNION: {
return (a.operator Quaternion()) * Quaternion().slerp((b.operator Quaternion()), c);
} break;
case Variant::TRANSFORM2D: {
return (a.operator Transform2D()) * Transform2D().interpolate_with((b.operator Transform2D()), c);
} break;
case Variant::TRANSFORM3D: {
return (a.operator Transform3D()) * Transform3D().interpolate_with((b.operator Transform3D()), c);
} break;
case Variant::BOOL:
case Variant::INT:
case Variant::RECT2I:
case Variant::VECTOR2I:
case Variant::VECTOR3I:
case Variant::VECTOR4I:
case Variant::PACKED_INT32_ARRAY:
case Variant::PACKED_INT64_ARRAY: {
// Fallback the interpolatable value which needs casting.
return cast_from_blendwise(blend_variant(cast_to_blendwise(a), cast_to_blendwise(b), c), a.get_type());
} break;
case Variant::STRING:
case Variant::STRING_NAME: {
Array arr_a = cast_to_blendwise(a);
Array arr_b = cast_to_blendwise(b);
int min_size = arr_a.size();
int max_size = arr_b.size();
bool is_a_larger = inform_variant_array(min_size, max_size);
int mid_size = interpolate_variant(arr_a.size(), arr_b.size(), c);
if (is_a_larger) {
arr_a.resize(mid_size);
} else {
arr_b.resize(mid_size);
}
return cast_from_blendwise(blend_variant(arr_a, arr_b, c), a.get_type());
} break;
case Variant::PACKED_BYTE_ARRAY: {
// Skip.
} break;
default: {
if (a.is_array()) {
const Array arr_a = a.operator Array();
const Array arr_b = b.operator Array();
int min_size = arr_a.size();
int max_size = arr_b.size();
bool is_a_larger = inform_variant_array(min_size, max_size);
Array result;
result.set_typed(MAX(arr_a.get_typed_builtin(), arr_b.get_typed_builtin()), StringName(), Variant());
result.resize(min_size);
int i = 0;
for (; i < min_size; i++) {
result[i] = blend_variant(arr_a[i], arr_b[i], c);
}
if (min_size != max_size) {
// Process with last element of the lesser array.
// This is pretty funny and bizarre, but artists like to use it for polygon animation.
Variant lesser_last;
if (is_a_larger && !Math::is_equal_approx(c, 1.0f)) {
result.resize(max_size);
if (i > 0) {
lesser_last = arr_b[i - 1];
} else {
Variant vz = arr_a[i];
vz.zero();
lesser_last = vz;
}
for (; i < max_size; i++) {
result[i] = blend_variant(arr_a[i], lesser_last, c);
}
} else if (!is_a_larger && !Math::is_zero_approx(c)) {
result.resize(max_size);
if (i > 0) {
lesser_last = arr_a[i - 1];
} else {
Variant vz = arr_b[i];
vz.zero();
lesser_last = vz;
}
for (; i < max_size; i++) {
result[i] = blend_variant(lesser_last, arr_b[i], c);
}
}
}
return result;
}
} break;
}
return c < 0.5 ? a : b;
}
Variant Animation::interpolate_variant(const Variant &a, const Variant &b, float c, bool p_snap_array_element) {
if (a.get_type() != b.get_type()) {
if (a.is_num() && b.is_num()) {
return interpolate_variant(cast_to_blendwise(a), cast_to_blendwise(b), c);
} else if (!a.is_array()) {
return a;
}
}
switch (a.get_type()) {
case Variant::NIL: {
return Variant();
} break;
case Variant::FLOAT: {
return Math::lerp(a.operator double(), b.operator double(), (double)c);
} break;
case Variant::VECTOR2: {
return (a.operator Vector2()).lerp(b.operator Vector2(), c);
} break;
case Variant::RECT2: {
const Rect2 ra = a.operator Rect2();
const Rect2 rb = b.operator Rect2();
return Rect2(ra.position.lerp(rb.position, c), ra.size.lerp(rb.size, c));
} break;
case Variant::VECTOR3: {
return (a.operator Vector3()).lerp(b.operator Vector3(), c);
} break;
case Variant::VECTOR4: {
return (a.operator Vector4()).lerp(b.operator Vector4(), c);
} break;
case Variant::PLANE: {
const Plane pa = a.operator Plane();
const Plane pb = b.operator Plane();
return Plane(pa.normal.lerp(pb.normal, c), Math::lerp((double)pa.d, (double)pb.d, (double)c));
} break;
case Variant::COLOR: {
return (a.operator Color()).lerp(b.operator Color(), c);
} break;
case Variant::AABB: {
const ::AABB aa = a.operator ::AABB();
const ::AABB ab = b.operator ::AABB();
return ::AABB(aa.position.lerp(ab.position, c), aa.size.lerp(ab.size, c));
} break;
case Variant::BASIS: {
return (a.operator Basis()).lerp(b.operator Basis(), c);
} break;
case Variant::QUATERNION: {
return (a.operator Quaternion()).slerp(b.operator Quaternion(), c);
} break;
case Variant::TRANSFORM2D: {
return (a.operator Transform2D()).interpolate_with(b.operator Transform2D(), c);
} break;
case Variant::TRANSFORM3D: {
return (a.operator Transform3D()).interpolate_with(b.operator Transform3D(), c);
} break;
case Variant::BOOL:
case Variant::INT:
case Variant::RECT2I:
case Variant::VECTOR2I:
case Variant::VECTOR3I:
case Variant::VECTOR4I:
case Variant::PACKED_INT32_ARRAY:
case Variant::PACKED_INT64_ARRAY: {
// Fallback the interpolatable value which needs casting.
return cast_from_blendwise(interpolate_variant(cast_to_blendwise(a), cast_to_blendwise(b), c), a.get_type());
} break;
case Variant::STRING:
case Variant::STRING_NAME: {
Array arr_a = cast_to_blendwise(a);
Array arr_b = cast_to_blendwise(b);
int min_size = arr_a.size();
int max_size = arr_b.size();
bool is_a_larger = inform_variant_array(min_size, max_size);
int mid_size = interpolate_variant(arr_a.size(), arr_b.size(), c);
if (is_a_larger) {
arr_a.resize(mid_size);
} else {
arr_b.resize(mid_size);
}
return cast_from_blendwise(interpolate_variant(arr_a, arr_b, c, true), a.get_type());
} break;
case Variant::PACKED_BYTE_ARRAY: {
// Skip.
} break;
default: {
if (a.is_array()) {
const Array arr_a = a.operator Array();
const Array arr_b = b.operator Array();
int min_size = arr_a.size();
int max_size = arr_b.size();
bool is_a_larger = inform_variant_array(min_size, max_size);
Array result;
result.set_typed(MAX(arr_a.get_typed_builtin(), arr_b.get_typed_builtin()), StringName(), Variant());
result.resize(min_size);
int i = 0;
for (; i < min_size; i++) {
result[i] = interpolate_variant(arr_a[i], arr_b[i], c);
}
if (min_size != max_size) {
// Process with last element of the lesser array.
// This is pretty funny and bizarre, but artists like to use it for polygon animation.
Variant lesser_last;
if (is_a_larger && !Math::is_equal_approx(c, 1.0f)) {
result.resize(max_size);
if (p_snap_array_element) {
c = 0;
}
if (i > 0) {
lesser_last = arr_b[i - 1];
} else {
Variant vz = arr_a[i];
vz.zero();
lesser_last = vz;
}
for (; i < max_size; i++) {
result[i] = interpolate_variant(arr_a[i], lesser_last, c);
}
} else if (!is_a_larger && !Math::is_zero_approx(c)) {
result.resize(max_size);
if (p_snap_array_element) {
c = 1;
}
if (i > 0) {
lesser_last = arr_a[i - 1];
} else {
Variant vz = arr_b[i];
vz.zero();
lesser_last = vz;
}
for (; i < max_size; i++) {
result[i] = interpolate_variant(lesser_last, arr_b[i], c);
}
}
}
return result;
}
} break;
}
return c < 0.5 ? a : b;
}
Variant Animation::cubic_interpolate_in_time_variant(const Variant &pre_a, const Variant &a, const Variant &b, const Variant &post_b, float c, real_t p_pre_a_t, real_t p_b_t, real_t p_post_b_t, bool p_snap_array_element) {
if (pre_a.get_type() != a.get_type() || pre_a.get_type() != b.get_type() || pre_a.get_type() != post_b.get_type()) {
if (pre_a.is_num() && a.is_num() && b.is_num() && post_b.is_num()) {
return cubic_interpolate_in_time_variant(cast_to_blendwise(pre_a), cast_to_blendwise(a), cast_to_blendwise(b), cast_to_blendwise(post_b), c, p_pre_a_t, p_b_t, p_post_b_t, p_snap_array_element);
} else if (!a.is_array()) {
return a;
}
}
switch (a.get_type()) {
case Variant::NIL: {
return Variant();
} break;
case Variant::FLOAT: {
return Math::cubic_interpolate_in_time(a.operator double(), b.operator double(), pre_a.operator double(), post_b.operator double(), (double)c, (double)p_b_t, (double)p_pre_a_t, (double)p_post_b_t);
} break;
case Variant::VECTOR2: {
return (a.operator Vector2()).cubic_interpolate_in_time(b.operator Vector2(), pre_a.operator Vector2(), post_b.operator Vector2(), c, p_b_t, p_pre_a_t, p_post_b_t);
} break;
case Variant::RECT2: {
const Rect2 rpa = pre_a.operator Rect2();
const Rect2 ra = a.operator Rect2();
const Rect2 rb = b.operator Rect2();
const Rect2 rpb = post_b.operator Rect2();
return Rect2(
ra.position.cubic_interpolate_in_time(rb.position, rpa.position, rpb.position, c, p_b_t, p_pre_a_t, p_post_b_t),
ra.size.cubic_interpolate_in_time(rb.size, rpa.size, rpb.size, c, p_b_t, p_pre_a_t, p_post_b_t));
} break;
case Variant::VECTOR3: {
return (a.operator Vector3()).cubic_interpolate_in_time(b.operator Vector3(), pre_a.operator Vector3(), post_b.operator Vector3(), c, p_b_t, p_pre_a_t, p_post_b_t);
} break;
case Variant::VECTOR4: {
return (a.operator Vector4()).cubic_interpolate_in_time(b.operator Vector4(), pre_a.operator Vector4(), post_b.operator Vector4(), c, p_b_t, p_pre_a_t, p_post_b_t);
} break;
case Variant::PLANE: {
const Plane ppa = pre_a.operator Plane();
const Plane pa = a.operator Plane();
const Plane pb = b.operator Plane();
const Plane ppb = post_b.operator Plane();
return Plane(
pa.normal.cubic_interpolate_in_time(pb.normal, ppa.normal, ppb.normal, c, p_b_t, p_pre_a_t, p_post_b_t),
Math::cubic_interpolate_in_time((double)pa.d, (double)pb.d, (double)ppa.d, (double)ppb.d, (double)c, (double)p_b_t, (double)p_pre_a_t, (double)p_post_b_t));
} break;
case Variant::COLOR: {
const Color cpa = pre_a.operator Color();
const Color ca = a.operator Color();
const Color cb = b.operator Color();
const Color cpb = post_b.operator Color();
return Color(
Math::cubic_interpolate_in_time((double)ca.r, (double)cb.r, (double)cpa.r, (double)cpb.r, (double)c, (double)p_b_t, (double)p_pre_a_t, (double)p_post_b_t),
Math::cubic_interpolate_in_time((double)ca.g, (double)cb.g, (double)cpa.g, (double)cpb.g, (double)c, (double)p_b_t, (double)p_pre_a_t, (double)p_post_b_t),
Math::cubic_interpolate_in_time((double)ca.b, (double)cb.b, (double)cpa.b, (double)cpb.b, (double)c, (double)p_b_t, (double)p_pre_a_t, (double)p_post_b_t),
Math::cubic_interpolate_in_time((double)ca.a, (double)cb.a, (double)cpa.a, (double)cpb.a, (double)c, (double)p_b_t, (double)p_pre_a_t, (double)p_post_b_t));
} break;
case Variant::AABB: {
const ::AABB apa = pre_a.operator ::AABB();
const ::AABB aa = a.operator ::AABB();
const ::AABB ab = b.operator ::AABB();
const ::AABB apb = post_b.operator ::AABB();
return AABB(
aa.position.cubic_interpolate_in_time(ab.position, apa.position, apb.position, c, p_b_t, p_pre_a_t, p_post_b_t),
aa.size.cubic_interpolate_in_time(ab.size, apa.size, apb.size, c, p_b_t, p_pre_a_t, p_post_b_t));
} break;
case Variant::BASIS: {
const Basis bpa = pre_a.operator Basis();
const Basis ba = a.operator Basis();
const Basis bb = b.operator Basis();
const Basis bpb = post_b.operator Basis();
return Basis(
ba.rows[0].cubic_interpolate_in_time(bb.rows[0], bpa.rows[0], bpb.rows[0], c, p_b_t, p_pre_a_t, p_post_b_t),
ba.rows[1].cubic_interpolate_in_time(bb.rows[1], bpa.rows[1], bpb.rows[1], c, p_b_t, p_pre_a_t, p_post_b_t),
ba.rows[2].cubic_interpolate_in_time(bb.rows[2], bpa.rows[2], bpb.rows[2], c, p_b_t, p_pre_a_t, p_post_b_t));
} break;
case Variant::QUATERNION: {
return (a.operator Quaternion()).spherical_cubic_interpolate_in_time(b.operator Quaternion(), pre_a.operator Quaternion(), post_b.operator Quaternion(), c, p_b_t, p_pre_a_t, p_post_b_t);
} break;
case Variant::TRANSFORM2D: {
const Transform2D tpa = pre_a.operator Transform2D();
const Transform2D ta = a.operator Transform2D();
const Transform2D tb = b.operator Transform2D();
const Transform2D tpb = post_b.operator Transform2D();
// TODO: May cause unintended skew, we needs spherical_cubic_interpolate_in_time() for angle and Transform2D::cubic_interpolate_with().
return Transform2D(
ta[0].cubic_interpolate_in_time(tb[0], tpa[0], tpb[0], c, p_b_t, p_pre_a_t, p_post_b_t),
ta[1].cubic_interpolate_in_time(tb[1], tpa[1], tpb[1], c, p_b_t, p_pre_a_t, p_post_b_t),
ta[2].cubic_interpolate_in_time(tb[2], tpa[2], tpb[2], c, p_b_t, p_pre_a_t, p_post_b_t));
} break;
case Variant::TRANSFORM3D: {
const Transform3D tpa = pre_a.operator Transform3D();
const Transform3D ta = a.operator Transform3D();
const Transform3D tb = b.operator Transform3D();
const Transform3D tpb = post_b.operator Transform3D();
// TODO: May cause unintended skew, we needs Transform3D::cubic_interpolate_with().
return Transform3D(
ta.basis.rows[0].cubic_interpolate_in_time(tb.basis.rows[0], tpa.basis.rows[0], tpb.basis.rows[0], c, p_b_t, p_pre_a_t, p_post_b_t),
ta.basis.rows[1].cubic_interpolate_in_time(tb.basis.rows[1], tpa.basis.rows[1], tpb.basis.rows[1], c, p_b_t, p_pre_a_t, p_post_b_t),
ta.basis.rows[2].cubic_interpolate_in_time(tb.basis.rows[2], tpa.basis.rows[2], tpb.basis.rows[2], c, p_b_t, p_pre_a_t, p_post_b_t),
ta.origin.cubic_interpolate_in_time(tb.origin, tpa.origin, tpb.origin, c, p_b_t, p_pre_a_t, p_post_b_t));
} break;
case Variant::BOOL:
case Variant::INT:
case Variant::RECT2I:
case Variant::VECTOR2I:
case Variant::VECTOR3I:
case Variant::VECTOR4I:
case Variant::PACKED_INT32_ARRAY:
case Variant::PACKED_INT64_ARRAY: {
// Fallback the interpolatable value which needs casting.
return cast_from_blendwise(cubic_interpolate_in_time_variant(cast_to_blendwise(pre_a), cast_to_blendwise(a), cast_to_blendwise(b), cast_to_blendwise(post_b), c, p_pre_a_t, p_b_t, p_post_b_t, p_snap_array_element), a.get_type());
} break;
case Variant::STRING:
case Variant::STRING_NAME: {
// TODO:
// String interpolation works on both the character array size and the character code, to apply cubic interpolation neatly,
// we need to figure out how to interpolate well in cases where there are fewer than 4 keys. So, for now, fallback to linear interpolation.
return interpolate_variant(a, b, c);
} break;
case Variant::PACKED_BYTE_ARRAY: {
// Skip.
} break;
default: {
if (a.is_array()) {
const Array arr_pa = pre_a.operator Array();
const Array arr_a = a.operator Array();
const Array arr_b = b.operator Array();
const Array arr_pb = post_b.operator Array();
int min_size = arr_a.size();
int max_size = arr_b.size();
bool is_a_larger = inform_variant_array(min_size, max_size);
Array result;
result.set_typed(MAX(arr_a.get_typed_builtin(), arr_b.get_typed_builtin()), StringName(), Variant());
result.resize(min_size);
if (min_size == 0 && max_size == 0) {
return result;
}
Variant vz;
if (is_a_larger) {
vz = arr_a[0];
} else {
vz = arr_b[0];
}
vz.zero();
Variant pre_last = arr_pa.size() ? arr_pa[arr_pa.size() - 1] : vz;
Variant post_last = arr_pb.size() ? arr_pb[arr_pb.size() - 1] : vz;
int i = 0;
for (; i < min_size; i++) {
result[i] = cubic_interpolate_in_time_variant(i >= arr_pa.size() ? pre_last : arr_pa[i], arr_a[i], arr_b[i], i >= arr_pb.size() ? post_last : arr_pb[i], c, p_pre_a_t, p_b_t, p_post_b_t);
}
if (min_size != max_size) {
// Process with last element of the lesser array.
// This is pretty funny and bizarre, but artists like to use it for polygon animation.
Variant lesser_last = vz;
if (is_a_larger && !Math::is_equal_approx(c, 1.0f)) {
result.resize(max_size);
if (p_snap_array_element) {
c = 0;
}
if (i > 0) {
lesser_last = arr_b[i - 1];
}
for (; i < max_size; i++) {
result[i] = cubic_interpolate_in_time_variant(i >= arr_pa.size() ? pre_last : arr_pa[i], arr_a[i], lesser_last, i >= arr_pb.size() ? post_last : arr_pb[i], c, p_pre_a_t, p_b_t, p_post_b_t);
}
} else if (!is_a_larger && !Math::is_zero_approx(c)) {
result.resize(max_size);
if (p_snap_array_element) {
c = 1;
}
if (i > 0) {
lesser_last = arr_a[i - 1];
}
for (; i < max_size; i++) {
result[i] = cubic_interpolate_in_time_variant(i >= arr_pa.size() ? pre_last : arr_pa[i], lesser_last, arr_b[i], i >= arr_pb.size() ? post_last : arr_pb[i], c, p_pre_a_t, p_b_t, p_post_b_t);
}
}
}
return result;
}
} break;
}
return c < 0.5 ? a : b;
}
bool Animation::inform_variant_array(int &r_min, int &r_max) {
if (r_min <= r_max) {
return false;
}
SWAP(r_min, r_max);
return true;
}
Animation::Animation() {
}
Animation::~Animation() {
for (int i = 0; i < tracks.size(); i++) {
memdelete(tracks[i]);
}
}