virtualx-engine/core/math/vector3.h

428 lines
10 KiB
C++
Raw Normal View History

2014-02-10 02:10:30 +01:00
/*************************************************************************/
/* vector3.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */
2014-02-10 02:10:30 +01:00
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef VECTOR3_H
#define VECTOR3_H
#include "math_defs.h"
#include "math_funcs.h"
#include "typedefs.h"
2014-02-10 02:10:30 +01:00
#include "ustring.h"
class Basis;
2014-02-10 02:10:30 +01:00
struct Vector3 {
enum Axis {
AXIS_X,
AXIS_Y,
2015-07-15 01:59:35 +02:00
AXIS_Z,
2014-02-10 02:10:30 +01:00
};
union {
struct {
real_t x;
real_t y;
real_t z;
};
2015-07-15 01:59:35 +02:00
2014-02-10 02:10:30 +01:00
real_t coord[3];
};
_FORCE_INLINE_ const real_t &operator[](int p_axis) const {
2015-07-15 01:59:35 +02:00
2014-02-10 02:10:30 +01:00
return coord[p_axis];
}
_FORCE_INLINE_ real_t &operator[](int p_axis) {
2015-07-15 01:59:35 +02:00
2014-02-10 02:10:30 +01:00
return coord[p_axis];
}
void set_axis(int p_axis, real_t p_value);
2016-10-01 20:54:31 +02:00
real_t get_axis(int p_axis) const;
2014-02-10 02:10:30 +01:00
2016-10-01 20:54:31 +02:00
int min_axis() const;
int max_axis() const;
2014-02-10 02:10:30 +01:00
2016-10-01 20:54:31 +02:00
_FORCE_INLINE_ real_t length() const;
_FORCE_INLINE_ real_t length_squared() const;
2015-07-15 01:59:35 +02:00
2016-10-01 20:54:31 +02:00
_FORCE_INLINE_ void normalize();
_FORCE_INLINE_ Vector3 normalized() const;
_FORCE_INLINE_ bool is_normalized() const;
2016-10-01 20:54:31 +02:00
_FORCE_INLINE_ Vector3 inverse() const;
2014-02-10 02:10:30 +01:00
_FORCE_INLINE_ void zero();
void snap(Vector3 p_val);
Vector3 snapped(Vector3 p_val) const;
2014-02-10 02:10:30 +01:00
void rotate(const Vector3 &p_axis, real_t p_phi);
Vector3 rotated(const Vector3 &p_axis, real_t p_phi) const;
2014-02-10 02:10:30 +01:00
2016-10-01 20:54:31 +02:00
/* Static Methods between 2 vector3s */
2014-02-10 02:10:30 +01:00
_FORCE_INLINE_ Vector3 linear_interpolate(const Vector3 &p_b, real_t p_t) const;
Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_t) const;
Vector3 cubic_interpolaten(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_t) const;
2014-02-10 02:10:30 +01:00
_FORCE_INLINE_ Vector3 cross(const Vector3 &p_b) const;
_FORCE_INLINE_ real_t dot(const Vector3 &p_b) const;
_FORCE_INLINE_ Basis outer(const Vector3 &p_b) const;
_FORCE_INLINE_ Basis to_diagonal_matrix() const;
2014-02-10 02:10:30 +01:00
2016-10-01 20:54:31 +02:00
_FORCE_INLINE_ Vector3 abs() const;
_FORCE_INLINE_ Vector3 floor() const;
_FORCE_INLINE_ Vector3 ceil() const;
2014-02-10 02:10:30 +01:00
_FORCE_INLINE_ real_t distance_to(const Vector3 &p_b) const;
_FORCE_INLINE_ real_t distance_squared_to(const Vector3 &p_b) const;
_FORCE_INLINE_ real_t angle_to(const Vector3 &p_b) const;
_FORCE_INLINE_ Vector3 slide(const Vector3 &p_vec) const;
_FORCE_INLINE_ Vector3 bounce(const Vector3 &p_vec) const;
_FORCE_INLINE_ Vector3 reflect(const Vector3 &p_vec) const;
2016-10-01 20:54:31 +02:00
/* Operators */
2014-02-10 02:10:30 +01:00
_FORCE_INLINE_ Vector3 &operator+=(const Vector3 &p_v);
_FORCE_INLINE_ Vector3 operator+(const Vector3 &p_v) const;
_FORCE_INLINE_ Vector3 &operator-=(const Vector3 &p_v);
_FORCE_INLINE_ Vector3 operator-(const Vector3 &p_v) const;
_FORCE_INLINE_ Vector3 &operator*=(const Vector3 &p_v);
_FORCE_INLINE_ Vector3 operator*(const Vector3 &p_v) const;
_FORCE_INLINE_ Vector3 &operator/=(const Vector3 &p_v);
_FORCE_INLINE_ Vector3 operator/(const Vector3 &p_v) const;
2014-02-10 02:10:30 +01:00
_FORCE_INLINE_ Vector3 &operator*=(real_t p_scalar);
2016-10-01 20:54:31 +02:00
_FORCE_INLINE_ Vector3 operator*(real_t p_scalar) const;
_FORCE_INLINE_ Vector3 &operator/=(real_t p_scalar);
2016-10-01 20:54:31 +02:00
_FORCE_INLINE_ Vector3 operator/(real_t p_scalar) const;
2014-02-10 02:10:30 +01:00
2016-10-01 20:54:31 +02:00
_FORCE_INLINE_ Vector3 operator-() const;
2014-02-10 02:10:30 +01:00
_FORCE_INLINE_ bool operator==(const Vector3 &p_v) const;
_FORCE_INLINE_ bool operator!=(const Vector3 &p_v) const;
_FORCE_INLINE_ bool operator<(const Vector3 &p_v) const;
_FORCE_INLINE_ bool operator<=(const Vector3 &p_v) const;
2014-02-10 02:10:30 +01:00
operator String() const;
_FORCE_INLINE_ Vector3() { x = y = z = 0; }
_FORCE_INLINE_ Vector3(real_t p_x, real_t p_y, real_t p_z) {
x = p_x;
y = p_y;
z = p_z;
}
2014-02-10 02:10:30 +01:00
};
#ifdef VECTOR3_IMPL_OVERRIDE
#include "vector3_inline.h"
#else
#include "matrix3.h"
Vector3 Vector3::cross(const Vector3 &p_b) const {
2014-02-10 02:10:30 +01:00
Vector3 ret(
(y * p_b.z) - (z * p_b.y),
(z * p_b.x) - (x * p_b.z),
(x * p_b.y) - (y * p_b.x));
2014-02-10 02:10:30 +01:00
2016-10-01 20:54:31 +02:00
return ret;
2014-02-10 02:10:30 +01:00
}
2016-10-01 20:54:31 +02:00
real_t Vector3::dot(const Vector3 &p_b) const {
2014-02-10 02:10:30 +01:00
return x * p_b.x + y * p_b.y + z * p_b.z;
2014-02-10 02:10:30 +01:00
}
Basis Vector3::outer(const Vector3 &p_b) const {
Vector3 row0(x * p_b.x, x * p_b.y, x * p_b.z);
Vector3 row1(y * p_b.x, y * p_b.y, y * p_b.z);
Vector3 row2(z * p_b.x, z * p_b.y, z * p_b.z);
return Basis(row0, row1, row2);
}
Basis Vector3::to_diagonal_matrix() const {
return Basis(x, 0, 0,
0, y, 0,
0, 0, z);
}
2014-02-10 02:10:30 +01:00
Vector3 Vector3::abs() const {
return Vector3(Math::abs(x), Math::abs(y), Math::abs(z));
2015-07-15 01:59:35 +02:00
}
Vector3 Vector3::floor() const {
return Vector3(Math::floor(x), Math::floor(y), Math::floor(z));
2015-07-15 01:59:35 +02:00
}
Vector3 Vector3::ceil() const {
return Vector3(Math::ceil(x), Math::ceil(y), Math::ceil(z));
2015-07-15 01:59:35 +02:00
}
2014-02-10 02:10:30 +01:00
Vector3 Vector3::linear_interpolate(const Vector3 &p_b, real_t p_t) const {
2014-02-10 02:10:30 +01:00
return Vector3(
x + (p_t * (p_b.x - x)),
y + (p_t * (p_b.y - y)),
z + (p_t * (p_b.z - z)));
2014-02-10 02:10:30 +01:00
}
real_t Vector3::distance_to(const Vector3 &p_b) const {
2016-10-01 20:54:31 +02:00
return (p_b - *this).length();
2014-02-10 02:10:30 +01:00
}
2016-10-01 21:20:09 +02:00
real_t Vector3::distance_squared_to(const Vector3 &p_b) const {
2014-02-10 02:10:30 +01:00
return (p_b - *this).length_squared();
2014-02-10 02:10:30 +01:00
}
real_t Vector3::angle_to(const Vector3 &p_b) const {
2016-10-01 21:20:09 +02:00
return Math::atan2(cross(p_b).length(), dot(p_b));
2016-10-01 21:20:09 +02:00
}
2014-02-10 02:10:30 +01:00
/* Operators */
Vector3 &Vector3::operator+=(const Vector3 &p_v) {
2014-02-10 02:10:30 +01:00
x += p_v.x;
y += p_v.y;
z += p_v.z;
2016-10-01 20:54:31 +02:00
return *this;
2014-02-10 02:10:30 +01:00
}
2016-10-01 20:54:31 +02:00
Vector3 Vector3::operator+(const Vector3 &p_v) const {
2014-02-10 02:10:30 +01:00
return Vector3(x + p_v.x, y + p_v.y, z + p_v.z);
2014-02-10 02:10:30 +01:00
}
Vector3 &Vector3::operator-=(const Vector3 &p_v) {
2014-02-10 02:10:30 +01:00
x -= p_v.x;
y -= p_v.y;
z -= p_v.z;
2016-10-01 20:54:31 +02:00
return *this;
2014-02-10 02:10:30 +01:00
}
Vector3 Vector3::operator-(const Vector3 &p_v) const {
2014-02-10 02:10:30 +01:00
return Vector3(x - p_v.x, y - p_v.y, z - p_v.z);
2014-02-10 02:10:30 +01:00
}
Vector3 &Vector3::operator*=(const Vector3 &p_v) {
2014-02-10 02:10:30 +01:00
x *= p_v.x;
y *= p_v.y;
z *= p_v.z;
2016-10-01 20:54:31 +02:00
return *this;
2014-02-10 02:10:30 +01:00
}
Vector3 Vector3::operator*(const Vector3 &p_v) const {
2014-02-10 02:10:30 +01:00
return Vector3(x * p_v.x, y * p_v.y, z * p_v.z);
2014-02-10 02:10:30 +01:00
}
Vector3 &Vector3::operator/=(const Vector3 &p_v) {
2014-02-10 02:10:30 +01:00
x /= p_v.x;
y /= p_v.y;
z /= p_v.z;
2016-10-01 20:54:31 +02:00
return *this;
2014-02-10 02:10:30 +01:00
}
2016-10-01 20:54:31 +02:00
Vector3 Vector3::operator/(const Vector3 &p_v) const {
2014-02-10 02:10:30 +01:00
return Vector3(x / p_v.x, y / p_v.y, z / p_v.z);
2014-02-10 02:10:30 +01:00
}
Vector3 &Vector3::operator*=(real_t p_scalar) {
2014-02-10 02:10:30 +01:00
x *= p_scalar;
y *= p_scalar;
z *= p_scalar;
2016-10-01 20:54:31 +02:00
return *this;
2014-02-10 02:10:30 +01:00
}
_FORCE_INLINE_ Vector3 operator*(real_t p_scalar, const Vector3 &p_vec) {
2016-10-01 20:54:31 +02:00
2014-02-10 02:10:30 +01:00
return p_vec * p_scalar;
}
Vector3 Vector3::operator*(real_t p_scalar) const {
return Vector3(x * p_scalar, y * p_scalar, z * p_scalar);
2014-02-10 02:10:30 +01:00
}
Vector3 &Vector3::operator/=(real_t p_scalar) {
2014-02-10 02:10:30 +01:00
x /= p_scalar;
y /= p_scalar;
z /= p_scalar;
2016-10-01 20:54:31 +02:00
return *this;
2014-02-10 02:10:30 +01:00
}
Vector3 Vector3::operator/(real_t p_scalar) const {
return Vector3(x / p_scalar, y / p_scalar, z / p_scalar);
2014-02-10 02:10:30 +01:00
}
Vector3 Vector3::operator-() const {
return Vector3(-x, -y, -z);
2014-02-10 02:10:30 +01:00
}
bool Vector3::operator==(const Vector3 &p_v) const {
2014-02-10 02:10:30 +01:00
return (x == p_v.x && y == p_v.y && z == p_v.z);
2014-02-10 02:10:30 +01:00
}
bool Vector3::operator!=(const Vector3 &p_v) const {
return (x != p_v.x || y != p_v.y || z != p_v.z);
2014-02-10 02:10:30 +01:00
}
bool Vector3::operator<(const Vector3 &p_v) const {
2014-02-10 02:10:30 +01:00
if (x == p_v.x) {
if (y == p_v.y)
return z < p_v.z;
2014-02-10 02:10:30 +01:00
else
return y < p_v.y;
2016-10-01 20:54:31 +02:00
} else {
return x < p_v.x;
2016-10-01 20:54:31 +02:00
}
2014-02-10 02:10:30 +01:00
}
bool Vector3::operator<=(const Vector3 &p_v) const {
2014-02-10 02:10:30 +01:00
if (x == p_v.x) {
if (y == p_v.y)
return z <= p_v.z;
2014-02-10 02:10:30 +01:00
else
return y < p_v.y;
2016-10-01 20:54:31 +02:00
} else {
return x < p_v.x;
2016-10-01 20:54:31 +02:00
}
2014-02-10 02:10:30 +01:00
}
_FORCE_INLINE_ Vector3 vec3_cross(const Vector3 &p_a, const Vector3 &p_b) {
2014-02-10 02:10:30 +01:00
return p_a.cross(p_b);
}
_FORCE_INLINE_ real_t vec3_dot(const Vector3 &p_a, const Vector3 &p_b) {
2014-02-10 02:10:30 +01:00
return p_a.dot(p_b);
}
real_t Vector3::length() const {
real_t x2 = x * x;
real_t y2 = y * y;
real_t z2 = z * z;
2014-02-10 02:10:30 +01:00
return Math::sqrt(x2 + y2 + z2);
2014-02-10 02:10:30 +01:00
}
2016-10-01 20:54:31 +02:00
2014-02-10 02:10:30 +01:00
real_t Vector3::length_squared() const {
real_t x2 = x * x;
real_t y2 = y * y;
real_t z2 = z * z;
2014-02-10 02:10:30 +01:00
return x2 + y2 + z2;
2014-02-10 02:10:30 +01:00
}
void Vector3::normalize() {
real_t l = length();
if (l == 0) {
x = y = z = 0;
2016-10-01 20:54:31 +02:00
} else {
x /= l;
y /= l;
z /= l;
2016-10-01 20:54:31 +02:00
}
2014-02-10 02:10:30 +01:00
}
2016-10-01 20:54:31 +02:00
2014-02-10 02:10:30 +01:00
Vector3 Vector3::normalized() const {
Vector3 v = *this;
2016-10-01 20:54:31 +02:00
v.normalize();
return v;
2014-02-10 02:10:30 +01:00
}
bool Vector3::is_normalized() const {
// use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
return Math::is_equal_approx(length_squared(), 1.0);
}
2014-02-10 02:10:30 +01:00
Vector3 Vector3::inverse() const {
return Vector3(1.0 / x, 1.0 / y, 1.0 / z);
2014-02-10 02:10:30 +01:00
}
void Vector3::zero() {
x = y = z = 0;
2014-02-10 02:10:30 +01:00
}
// slide returns the component of the vector along the given plane, specified by its normal vector.
Vector3 Vector3::slide(const Vector3 &p_n) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(p_n.is_normalized() == false, Vector3());
#endif
return *this - p_n * this->dot(p_n);
}
2016-10-01 20:54:31 +02:00
Vector3 Vector3::bounce(const Vector3 &p_n) const {
return -reflect(p_n);
}
Vector3 Vector3::reflect(const Vector3 &p_n) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(p_n.is_normalized() == false, Vector3());
#endif
return 2.0 * p_n * this->dot(p_n) - *this;
}
2014-02-10 02:10:30 +01:00
#endif
#endif // VECTOR3_H