Stores variables that can be accessed from everywhere. Use [method get_setting], [method set_setting] or [method has_setting] to access them. Variables stored in [code]project.godot[/code] are also loaded into [ProjectSettings], making this object very useful for reading custom game configuration options.
When naming a Project Settings property, use the full path to the setting including the category. For example, [code]"application/config/name"[/code] for the project name. Category and property names can be viewed in the Project Settings dialog.
[b]Feature tags:[/b] Project settings can be overridden for specific platforms and configurations (debug, release, ...) using [url=$DOCS_URL/tutorials/export/feature_tags.html]feature tags[/url].
[b]Overriding:[/b] Any project setting can be overridden by creating a file named [code]override.cfg[/code] in the project's root directory. This can also be used in exported projects by placing this file in the same directory as the project binary. Overriding will still take the base project settings' [url=$DOCS_URL/tutorials/export/feature_tags.html]feature tags[/url] in account. Therefore, make sure to [i]also[/i] override the setting with the desired feature tags if you want them to override base project settings on all platforms and configurations.
Returns the value of the setting identified by [param name]. If the setting doesn't exist and [param default_value] is specified, the value of [param default_value] is returned. Otherwise, [code]null[/code] is returned.
[b]Note:[/b] This method doesn't take potential feature overrides into account automatically. Use [method get_setting_with_override] to handle seamlessly.
Returns the absolute, native OS path corresponding to the localized [param path] (starting with [code]res://[/code] or [code]user://[/code]). The returned path will vary depending on the operating system and user preferences. See [url=$DOCS_URL/tutorials/io/data_paths.html]File paths in Godot projects[/url] to see what those paths convert to. See also [method localize_path].
[b]Note:[/b] [method globalize_path] with [code]res://[/code] will not work in an exported project. Instead, prepend the executable's base directory to the path when running from an exported project:
[codeblock]
var path = ""
if OS.has_feature("editor"):
# Running from an editor binary.
# `path` will contain the absolute path to `hello.txt` located in the project root.
Loads the contents of the .pck or .zip file specified by [param pack] into the resource filesystem ([code]res://[/code]). Returns [code]true[/code] on success.
[b]Note:[/b] If a file from [param pack] shares the same path as a file already in the resource filesystem, any attempts to load that file will use the file from [param pack] unless [param replace_files] is set to [code]false[/code].
[b]Note:[/b] The optional [param offset] parameter can be used to specify the offset in bytes to the start of the resource pack. This is only supported for .pck files.
Returns the localized path (starting with [code]res://[/code]) corresponding to the absolute, native OS [param path]. See also [method globalize_path].
[b]Note:[/b] This method is intended to be used by editor plugins, as modified [ProjectSettings] can't be loaded back in the running app. If you want to change project settings in exported projects, use [method save_custom] to save [code]override.cfg[/code] file.
Saves the configuration to a custom file. The file extension must be [code].godot[/code] (to save in text-based [ConfigFile] format) or [code].binary[/code] (to save in binary format). You can also save [code]override.cfg[/code] file, which is also text, but can be used in exported projects unlike other formats.
Defines if the specified setting is considered basic or advanced. Basic settings will always be shown in the project settings. Advanced settings will only be shown if the user enables the "Advanced Settings" option.
Defines if the specified setting is considered internal. An internal setting won't show up in the Project Settings dialog. This is mostly useful for addons that need to store their own internal settings without exposing them directly to the user.
Sets whether a setting requires restarting the editor to properly take effect.
[b]Note:[/b] This is just a hint to display to the user that the editor must be restarted for changes to take effect. Enabling [method set_restart_if_changed] does [i]not[/i] delay the setting being set when changed.
If [code]true[/code], scale the boot splash image to the full window size (preserving the aspect ratio) when the engine starts. If [code]false[/code], the engine will leave it at the default pixel size.
If [code]true[/code], displays the image specified in [member application/boot_splash/image] when the engine starts. If [code]false[/code], only displays the plain color specified in [member application/boot_splash/bg_color].
If [code]true[/code], applies linear filtering when scaling the image (recommended for high-resolution artwork). If [code]false[/code], uses nearest-neighbor interpolation (recommended for pixel art).
This user directory is used for storing persistent data ([code]user://[/code] filesystem). If a custom directory name is defined, this name will be appended to the system-specific user data directory (same parent folder as the Godot configuration folder documented in [method OS.get_user_data_dir]).
Icon set in [code].icns[/code] format used on macOS to set the game's icon. This is done automatically on start by calling [method DisplayServer.set_native_icon].
The project's name. It is used both by the Project Manager and by exporters. The project name can be translated by translating its value in localization files. The window title will be set to match the project name automatically on startup.
[b]Note:[/b] Changing this value will also change the user data folder's path if [member application/config/use_custom_user_dir] is [code]false[/code]. After renaming the project, you will no longer be able to access existing data in [code]user://[/code] unless you rename the old folder to match the new project name. See [url=$DOCS_URL/tutorials/io/data_paths.html]Data paths[/url] in the documentation for more information.
Specifies a file to override project settings. For example: [code]user://custom_settings.cfg[/code]. See "Overriding" in the [ProjectSettings] class description at the top for more information.
[b]Note:[/b] Regardless of this setting's value, [code]res://override.cfg[/code] will still be read to override the project settings.
If [code]true[/code], the project will save user data to its own user directory. If [member application/config/custom_user_dir_name] is empty, [code]<OS user data directory>/<project name>[/code] directory will be used. If [code]false[/code], the project will save user data to [code]<OS user data directory>/Godot/app_userdata/<project name>[/code].
See also [url=$DOCS_URL/tutorials/io/data_paths.html#accessing-persistent-user-data-user]File paths in Godot projects[/url]. This setting is only effective on desktop platforms.
If [code]true[/code], the project will use a hidden directory ([code].godot[/code]) for storing project-specific data (metadata, shader cache, etc.).
If [code]false[/code], a non-hidden directory ([code]godot[/code]) will be used instead.
[b]Note:[/b] Restart the application after changing this setting.
[b]Note:[/b] Changing this value can help on platforms or with third-party tools where hidden directory patterns are disallowed. Only modify this setting if you know that your environment requires it, as changing the default can impact compatibility with some external tools or plugins which expect the default [code].godot[/code] folder.
The project's human-readable version identifier. This is used by exporters if the version identifier isn't overridden there. If [member application/config/version] is an empty string and the version identifier isn't overridden in an exporter, the exporter will use [code]1.0.0[/code] as a version identifier.
Icon set in [code].ico[/code] format used on Windows to set the game's icon. This is done automatically on start by calling [method DisplayServer.set_native_icon].
Time samples for frame deltas are subject to random variation introduced by the platform, even when frames are displayed at regular intervals thanks to V-Sync. This can lead to jitter. Delta smoothing can often give a better result by filtering the input deltas to correct for minor fluctuations from the refresh rate.
[b]Note:[/b] Delta smoothing is only attempted when [member display/window/vsync/vsync_mode] is set to [code]enabled[/code], as it does not work well without V-Sync.
It may take several seconds at a stable frame rate before the smoothing is initially activated. It will only be active on machines where performance is adequate to render frames at the refresh rate.
If [code]true[/code], disables printing to standard error. If [code]true[/code], this also hides error and warning messages printed by [method @GlobalScope.push_error] and [method @GlobalScope.push_warning]. See also [member application/run/disable_stdout].
Changes to this setting will only be applied upon restarting the application.
If [code]true[/code], disables printing to standard output. This is equivalent to starting the editor or project with the [code]--quiet[/code] [url=$DOCS_URL/tutorials/editor/command_line_tutorial.html]command line argument[/url]. See also [member application/run/disable_stderr].
If [code]true[/code], flushes the standard output stream every time a line is printed. This affects both terminal logging and file logging.
When running a project, this setting must be enabled if you want logs to be collected by service managers such as systemd/journalctl. This setting is disabled by default on release builds, since flushing on every printed line will negatively affect performance if lots of lines are printed in a rapid succession. Also, if this setting is enabled, logged files will still be written successfully if the application crashes or is otherwise killed by the user (without being closed "normally").
[b]Note:[/b] Regardless of this setting, the standard error stream ([code]stderr[/code]) is always flushed when a line is printed to it.
If [code]true[/code], enables low-processor usage mode. This setting only works on desktop platforms. The screen is not redrawn if nothing changes visually. This is meant for writing applications and editors, but is pretty useless (and can hurt performance) in most games.
Maximum number of frames per second allowed. A value of [code]0[/code] means "no limit". The actual number of frames per second may still be below this value if the CPU or GPU cannot keep up with the project logic and rendering.
Limiting the FPS can be useful to reduce system power consumption, which reduces heat and noise emissions (and improves battery life on mobile devices).
If [member display/window/vsync/vsync_mode] is set to [code]Enabled[/code] or [code]Adaptive[/code], it takes precedence and the forced FPS number cannot exceed the monitor's refresh rate.
If [member display/window/vsync/vsync_mode] is [code]Enabled[/code], on monitors with variable refresh rate enabled (G-Sync/FreeSync), using a FPS limit a few frames lower than the monitor's refresh rate will [url=https://blurbusters.com/howto-low-lag-vsync-on/]reduce input lag while avoiding tearing[/url].
If [member display/window/vsync/vsync_mode] is [code]Disabled[/code], limiting the FPS to a high value that can be consistently reached on the system can reduce input lag compared to an uncapped framerate. Since this works by ensuring the GPU load is lower than 100%, this latency reduction is only effective in GPU-bottlenecked scenarios, not CPU-bottlenecked scenarios.
See also [member physics/common/physics_ticks_per_second].
This setting can be overridden using the [code]--max-fps <fps;>[/code] command line argument (including with a value of [code]0[/code] for unlimited framerate).
Audio buses will disable automatically when sound goes below a given dB threshold for a given time. This saves CPU as effects assigned to that bus will no longer do any processing.
Audio buses will disable automatically when sound goes below a given dB threshold for a given time. This saves CPU as effects assigned to that bus will no longer do any processing.
Specifies the audio driver to use. This setting is platform-dependent as each platform supports different audio drivers. If left empty, the default audio driver will be used.
The [code]Dummy[/code] audio driver disables all audio playback and recording, which is useful for non-game applications as it reduces CPU usage. It also prevents the engine from appearing as an application playing audio in the OS' audio mixer.
[b]Note:[/b] The driver in use can be overridden at runtime via the [code]--audio-driver[/code] [url=$DOCS_URL/tutorials/editor/command_line_tutorial.html]command line argument[/url].
[b]Note:[/b] If the operating system blocks access to audio input devices (due to the user's privacy settings), audio capture will only return silence. On Windows 10 and later, make sure that apps are allowed to access the microphone in the OS' privacy settings.
Safer override for [member audio/driver/mix_rate] in the Web platform. Here [code]0[/code] means "let the browser choose" (since some browsers do not like forcing the mix rate).
Specifies the preferred output latency in milliseconds for audio. Lower values will result in lower audio latency at the cost of increased CPU usage. Low values may result in audible cracking on slower hardware.
Audio output latency may be constrained by the host operating system and audio hardware drivers. If the host can not provide the specified audio output latency then Godot will attempt to use the nearest latency allowed by the host. As such you should always use [method AudioServer.get_output_latency] to determine the actual audio output latency.
The base strength of the panning effect for all [AudioStreamPlayer2D] nodes. The panning strength can be further scaled on each Node using [member AudioStreamPlayer2D.panning_strength]. A value of [code]0.0[/code] disables stereo panning entirely, leaving only volume attenuation in place. A value of [code]1.0[/code] completely mutes one of the channels if the sound is located exactly to the left (or right) of the listener.
The default value of [code]0.5[/code] is tuned for headphones. When using speakers, you may find lower values to sound better as speakers have a lower stereo separation compared to headphones.
The base strength of the panning effect for all [AudioStreamPlayer3D] nodes. The panning strength can be further scaled on each Node using [member AudioStreamPlayer3D.panning_strength]. A value of [code]0.0[/code] disables stereo panning entirely, leaving only volume attenuation in place. A value of [code]1.0[/code] completely mutes one of the channels if the sound is located exactly to the left (or right) of the listener.
The default value of [code]0.5[/code] is tuned for headphones. When using speakers, you may find lower values to sound better as speakers have a lower stereo separation compared to headphones.
The default compression level for gzip. Affects compressed scenes and resources. Higher levels result in smaller files at the cost of compression speed. Decompression speed is mostly unaffected by the compression level. [code]-1[/code] uses the default gzip compression level, which is identical to [code]6[/code] but could change in the future due to underlying zlib updates.
The default compression level for Zlib. Affects compressed scenes and resources. Higher levels result in smaller files at the cost of compression speed. Decompression speed is mostly unaffected by the compression level. [code]-1[/code] uses the default gzip compression level, which is identical to [code]6[/code] but could change in the future due to underlying zlib updates.
The default compression level for Zstandard. Affects compressed scenes and resources. Higher levels result in smaller files at the cost of compression speed. Decompression speed is mostly unaffected by the compression level.
Largest size limit (in power of 2) allowed when compressing using long-distance matching with Zstandard. Higher values can result in better compression, but will require more memory when compressing and decompressing.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when an [code]assert[/code] call always evaluates to false.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when an [code]assert[/code] call always evaluates to true.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when an identifier contains characters that can be confused with something else, like when mixing different alphabets.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when an identifier declared in the nested block has the same name as an identifier declared below in the parent block.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when an identifier that will be shadowed below in the block is used.
If [code]true[/code], enables specific GDScript warnings (see [code]debug/gdscript/warnings/*[/code] settings). If [code]false[/code], disables all GDScript warnings.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when [method Node.get_node] (or the shorthand [code]$[/code]) is used as default value of a class variable without the [code]@onready[/code] annotation.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when a ternary operator may emit values with incompatible types.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when a static inferred type uses a [Variant] as initial value, which makes the static type to also be Variant.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when trying to use an integer as an enum without an explicit cast.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when trying to use an integer as an enum when there is no matching enum member for that numeric value.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when dividing an integer by another integer (the decimal part will be discarded).
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when passing a floating-point value to a function that expects an integer (it will be converted and lose precision).
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when a method in the script overrides a native method, because it may not behave as expected.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when the [code]@onready[/code] annotation is used together with the [code]@export[/code] annotation, since it may not behave as expected.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when a function that is not a coroutine is called with await.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when a [code]for[/code] variable type specifier is a supertype of the inferred type.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when the [code]@static_unload[/code] annotation is used in a script without any static variables.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when calling a function without using its return value (by assigning it to a variable or using it as a function argument). Such return values are sometimes used to denote possible errors using the [enum Error] enum.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when defining a local or member variable, signal, or enum that would have the same name as a built-in function or global class name, thus shadowing it.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when defining a local or member variable that would shadow a member variable that the class defines.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when defining a local or subclass member variable that would shadow a variable that is inherited from a parent class.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when calling an expression that has no effect on the surrounding code, such as writing [code]2 + 2[/code] as a statement.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when calling a ternary expression that has no effect on the surrounding code, such as writing [code]42 if active else 0[/code] as a statement.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when calling a static method from an instance of a class instead of from the class directly.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when using a variable that wasn't previously assigned.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when assigning a variable using an assignment operator like [code]+=[/code] if the variable wasn't previously assigned.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when unreachable code is detected (such as after a [code]return[/code] statement that will always be executed).
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when an unreachable [code]match[/code] pattern is detected.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when using an expression whose type may not be compatible with the function parameter expected.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when calling a method whose presence is not guaranteed at compile-time in the class.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when accessing a property whose presence is not guaranteed at compile-time in the class.
When set to [code]warn[/code] or [code]error[/code], produces a warning or an error respectively when returning a call from a [code]void[/code] function when such call cannot be guaranteed to be also [code]void[/code].
<membername="debug/settings/crash_handler/message"type="String"setter=""getter=""default=""Please include this when reporting the bug to the project developer."">
Message to be displayed before the backtrace when the engine crashes. By default, this message is only used in exported projects due to the editor-only override applied to this setting.
</member>
<membername="debug/settings/crash_handler/message.editor"type="String"setter=""getter=""default=""Please include this when reporting the bug on: https://github.com/godotengine/godot/issues"">
Editor-only override for [member debug/settings/crash_handler/message]. Does not affect exported projects in debug or release mode.
Print GPU profile information to standard output every second. This includes how long each frame takes the GPU to render on average, broken down into different steps of the render pipeline, such as CanvasItems, shadows, glow, etc.
Print more information to standard output when running. It displays information such as memory leaks, which scenes and resources are being loaded, etc. This can also be enabled using the [code]--verbose[/code] or [code]-v[/code] [url=$DOCS_URL/tutorials/editor/command_line_tutorial.html]command line argument[/url], even on an exported project. See also [method OS.is_stdout_verbose] and [method @GlobalScope.print_verbose].
When set to [code]true[/code], produces a warning when the shader exceeds certain device limits. Currently, the only device limit checked is the limit on uniform buffer size. More device limits will be added in the future.
If [code]true[/code], enables specific shader warnings (see [code]debug/shader_language/warnings/*[/code] settings). If [code]false[/code], disables all shader warnings.
When set to [code]true[/code], produces a warning when two floating point numbers are compared directly with the [code]==[/code] operator or the [code]!=[/code] operator.
When set to [code]true[/code], produces a warning upon encountering certain formatting errors. Currently this only checks for empty statements. More formatting errors may be added over time.
Color of the static avoidance obstacles edges when their vertices are winded in order to push agents in, visible when "Visible Avoidance" is enabled in the Debug menu.
Color of the static avoidance obstacles edges when their vertices are winded in order to push agents out, visible when "Visible Avoidance" is enabled in the Debug menu.
Color of the static avoidance obstacles faces when their vertices are winded in order to push agents in, visible when "Visible Avoidance" is enabled in the Debug menu.
Color of the static avoidance obstacles faces when their vertices are winded in order to push agents out, visible when "Visible Avoidance" is enabled in the Debug menu.
If [code]true[/code], allows HiDPI display on Windows, macOS, Android, iOS and Web. If [code]false[/code], the platform's low-DPI fallback will be used on HiDPI displays, which causes the window to be displayed in a blurry or pixelated manner (and can cause various window management bugs). Therefore, it is recommended to make your project scale to [url=$DOCS_URL/tutorials/rendering/multiple_resolutions.html]multiple resolutions[/url] instead of disabling this setting.
[b]Note:[/b] When set to a portrait orientation, this project setting does not flip the project resolution's width and height automatically. Instead, you have to set [member display/window/size/viewport_width] and [member display/window/size/viewport_height] accordingly.
If [code]true[/code], allows per-pixel transparency for the window background. This affects performance, so leave it on [code]false[/code] unless you need it. See also [member display/window/size/transparent] and [member rendering/viewport/transparent_background].
Main window content is expanded to the full size of the window. Unlike a borderless window, the frame is left intact and can be used to resize the window, and the title bar is transparent, but has minimize/maximize/close buttons.
[b]Note:[/b] This setting is implemented only on macOS.
Main window initial position (in virtual desktop coordinates), this setting is used only if [member display/window/size/initial_position_type] is set to "Absolute" ([code]0[/code]).
Main window initial screen, this setting is used only if [member display/window/size/initial_position_type] is set to "Other Screen Center" ([code]2[/code]).
If [code]true[/code], enables a window manager hint that the main window background [i]can[/i] be transparent. This does not make the background actually transparent. For the background to be transparent, the root viewport must also be made transparent by enabling [member rendering/viewport/transparent_background].
Sets the game's main viewport height. On desktop platforms, this is also the initial window height, represented by an indigo-colored rectangle in the 2D editor. Stretch mode settings also use this as a reference when using the [code]canvas_items[/code] or [code]viewport[/code] stretch modes. See also [member display/window/size/viewport_width], [member display/window/size/window_width_override] and [member display/window/size/window_height_override].
Sets the game's main viewport width. On desktop platforms, this is also the initial window width, represented by an indigo-colored rectangle in the 2D editor. Stretch mode settings also use this as a reference when using the [code]canvas_items[/code] or [code]viewport[/code] stretch modes. See also [member display/window/size/viewport_height], [member display/window/size/window_width_override] and [member display/window/size/window_height_override].
On desktop platforms, overrides the game's initial window height. See also [member display/window/size/window_width_override], [member display/window/size/viewport_width] and [member display/window/size/viewport_height].
[b]Note:[/b] By default, or when set to [code]0[/code], the initial window height is the [member display/window/size/viewport_height]. This setting is ignored on iOS, Android, and Web.
On desktop platforms, overrides the game's initial window width. See also [member display/window/size/window_height_override], [member display/window/size/viewport_width] and [member display/window/size/viewport_height].
[b]Note:[/b] By default, or when set to [code]0[/code], the initial window width is the viewport [member display/window/size/viewport_width]. This setting is ignored on iOS, Android, and Web.
Defines how the base size is stretched to fit the resolution of the window or screen.
[b]"disabled"[/b]: No stretching happens. One unit in the scene corresponds to one pixel on the screen. In this mode, [member display/window/stretch/aspect] has no effect. Recommended for non-game applications.
[b]"canvas_items"[/b]: The base size specified in width and height in the project settings is stretched to cover the whole screen (taking [member display/window/stretch/aspect] into account). This means that everything is rendered directly at the target resolution. 3D is unaffected, while in 2D, there is no longer a 1:1 correspondence between sprite pixels and screen pixels, which may result in scaling artifacts. Recommended for most games that don't use a pixel art esthetic, although it is possible to use this stretch mode for pixel art games too (especially in 3D).
[b]"viewport"[/b]: The size of the root [Viewport] is set precisely to the base size specified in the Project Settings' Display section. The scene is rendered to this viewport first. Finally, this viewport is scaled to fit the screen (taking [member display/window/stretch/aspect] into account). Recommended for games that use a pixel art esthetic.
The scale factor multiplier to use for 2D elements. This multiplies the final scale factor determined by [member display/window/stretch/mode]. If using the [b]Disabled[/b] stretch mode, this scale factor is applied as-is. This can be adjusted to make the UI easier to read on certain displays.
The policy to use to determine the final scale factor for 2D elements. This affects how [member display/window/stretch/scale] is applied, in addition to the automatic scale factor determined by [member display/window/stretch/mode].
[b]Note:[/b] This property is only read when the project starts. To change the V-Sync mode at runtime, call [method DisplayServer.window_set_vsync_mode] instead.
Name of the .NET assembly. This name is used as the name of the [code].csproj[/code] and [code].sln[/code] files. By default, it's set to the name of the project ([member application/config/name]) allowing to change it in the future without affecting the .NET assembly.
Number of times to attempt assembly reloading after rebuilding .NET assemblies. Effectively also the timeout in seconds to wait for unloading of script assemblies to finish.
Directory that contains the [code].sln[/code] file. By default, the [code].sln[/code] files is in the root of the project directory, next to the [code]project.godot[/code] and [code].csproj[/code] files.
Changing this value allows setting up a multi-project scenario where there are multiple [code].csproj[/code]. Keep in mind that the Godot project is considered one of the C# projects in the workspace and it's root directory should contain the [code]project.godot[/code] and [code].csproj[/code] next to each other.
If [code]true[/code], text resources are converted to a binary format on export. This decreases file sizes and speeds up loading slightly.
[b]Note:[/b] If [member editor/export/convert_text_resources_to_binary] is [code]true[/code], [method @GDScript.load] will not be able to return the converted files in an exported project. Some file paths within the exported PCK will also change, such as [code]project.godot[/code] becoming [code]project.binary[/code]. If you rely on run-time loading of files present within the PCK, set [member editor/export/convert_text_resources_to_binary] to [code]false[/code].
If [code]true[/code], requests V-Sync to be disabled when writing a movie (similar to setting [member display/window/vsync/vsync_mode] to [b]Disabled[/b]). This can speed up video writing if the hardware is fast enough to render, encode and save the video at a framerate higher than the monitor's refresh rate.
[b]Note:[/b] [member editor/movie_writer/disable_vsync] has no effect if the operating system or graphics driver forces V-Sync with no way for applications to disable it.
The number of frames per second to record in the video when writing a movie. Simulation speed will adjust to always match the specified framerate, which means the engine will appear to run slower at higher [member editor/movie_writer/fps] values. Certain FPS values will require you to adjust [member editor/movie_writer/mix_rate] to prevent audio from desynchronizing over time.
This can be specified manually on the command line using the [code]--fixed-fps <fps>[/code] [url=$DOCS_URL/tutorials/editor/command_line_tutorial.html]command line argument[/url].
The audio mix rate to use in the recorded audio when writing a movie (in Hz). This can be different from [member audio/driver/mix_rate], but this value must be divisible by [member editor/movie_writer/fps] to prevent audio from desynchronizing over time.
The JPEG quality to use when writing a video to an AVI file, between [code]0.01[/code] and [code]1.0[/code] (inclusive). Higher [code]quality[/code] values result in better-looking output at the cost of larger file sizes. Recommended [code]quality[/code] values are between [code]0.75[/code] and [code]0.9[/code]. Even at quality [code]1.0[/code], JPEG compression remains lossy.
- AVI container with MJPEG for video and uncompressed audio ([code].avi[/code] file extension). Lossy compression, medium file sizes, fast encoding. The lossy compression quality can be adjusted by changing [member ProjectSettings.editor/movie_writer/mjpeg_quality]. The resulting file can be viewed in most video players, but it must be converted to another format for viewing on the web or by Godot with [VideoStreamPlayer]. MJPEG does not support transparency. AVI output is currently limited to a file of 4 GB in size at most.
- PNG image sequence for video and WAV for audio ([code].png[/code] file extension). Lossless compression, large file sizes, slow encoding. Designed to be encoded to a video file with another tool such as [url=https://ffmpeg.org/]FFmpeg[/url] after recording. Transparency is currently not supported, even if the root viewport is set to be transparent.
If you need to encode to a different format or pipe a stream through third-party software, you can extend this [MovieWriter] class to create your own movie writers.
When using PNG output, the frame number will be appended at the end of the file name. It starts from 0 and is padded with 8 digits to ensure correct sorting and easier processing. For example, if the output path is [code]/tmp/hello.png[/code], the first two frames will be [code]/tmp/hello00000000.png[/code] and [code]/tmp/hello00000001.png[/code]. The audio will be saved at [code]/tmp/hello.wav[/code].
The format of the default signal callback name (in the Signal Connection Dialog). The following substitutions are available: [code]{NodeName}[/code], [code]{nodeName}[/code], [code]{node_name}[/code], [code]{SignalName}[/code], [code]{signalName}[/code], and [code]{signal_name}[/code].
The format of the default signal callback name when a signal connects to the same node that emits it (in the Signal Connection Dialog). The following substitutions are available: [code]{NodeName}[/code], [code]{nodeName}[/code], [code]{node_name}[/code], [code]{SignalName}[/code], [code]{signalName}[/code], and [code]{signal_name}[/code].
The command-line arguments to append to Godot's own command line when running the project. This doesn't affect the editor itself.
It is possible to make another executable run Godot by using the [code]%command%[/code] placeholder. The placeholder will be replaced with Godot's own command line. Program-specific arguments should be placed [i]before[/i] the placeholder, whereas Godot-specific arguments should be placed [i]after[/i] the placeholder.
For example, this can be used to force the project to run on the dedicated GPU in a NVIDIA Optimus system on Linux:
Text-based file extensions to include in the script editor's "Find in Files" feature. You can add e.g. [code]tscn[/code] if you wish to also parse your scene files, especially if you use built-in scripts which are serialized in the scene files.
Search path for project-specific script templates. Godot will search for script templates both in the editor-specific path and in this project-specific path.
This requires configuring a path to a Blender executable in the editor settings at [code]filesystem/import/blender/blender3_path[/code]. Blender 3.0 or later is required.
If [code]true[/code], swaps [b]Cancel[/b] and [b]OK[/b] buttons in dialogs on Windows to follow interface conventions. [method DisplayServer.get_swap_cancel_ok] can be used to query whether buttons are swapped at run-time.
Font anti-aliasing mode for the default project font. See [member FontFile.antialiasing].
[b]Note:[/b] This setting does not affect custom [Font]s used within the project. Use the [b]Import[/b] dock for that instead (see [member ResourceImporterDynamicFont.antialiasing]).
If set to [code]true[/code], the default font will have mipmaps generated. This prevents text from looking grainy when a [Control] is scaled down, or when a [Label3D] is viewed from a long distance (if [member Label3D.texture_filter] is set to a mode that displays mipmaps).
Enabling [member gui/theme/default_font_generate_mipmaps] increases font generation time and memory usage. Only enable this setting if you actually need it.
[b]Note:[/b] This setting does not affect custom [Font]s used within the project. Use the [b]Import[/b] dock for that instead (see [member ResourceImporterDynamicFont.generate_mipmaps]).
Font hinting mode for the default project font. See [member FontFile.hinting].
[b]Note:[/b] This setting does not affect custom [Font]s used within the project. Use the [b]Import[/b] dock for that instead (see [member ResourceImporterDynamicFont.hinting]).
If set to [code]true[/code], the default font will use multichannel signed distance field (MSDF) for crisp rendering at any size. Since this approach does not rely on rasterizing the font every time its size changes, this allows for resizing the font in real-time without any performance penalty. Text will also not look grainy for [Control]s that are scaled down (or for [Label3D]s viewed from a long distance).
MSDF font rendering can be combined with [member gui/theme/default_font_generate_mipmaps] to further improve font rendering quality when scaled down.
[b]Note:[/b] This setting does not affect custom [Font]s used within the project. Use the [b]Import[/b] dock for that instead (see [member ResourceImporterDynamicFont.multichannel_signed_distance_field]).
Font glyph subpixel positioning mode for the default project font. See [member FontFile.subpixel_positioning].
[b]Note:[/b] This setting does not affect custom [Font]s used within the project. Use the [b]Import[/b] dock for that instead (see [member ResourceImporterDynamicFont.subpixel_positioning]).
[b]Note:[/b] This property is only read when the project starts. To change the default scale at runtime, set [member ThemeDB.fallback_base_scale] instead.
Default [InputEventAction] to confirm a focused button, menu or list item, or validate input.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to discard a modal or pending input.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to copy a selection to the clipboard.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to cut a selection to the clipboard.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to move down in the UI.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to go to the end position of a [Control] (e.g. last item in an [ItemList] or a [Tree]), matching the behavior of [constant KEY_END] on typical desktop UI systems.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to refresh the contents of the current directory of a [FileDialog].
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to toggle showing hidden files and directories in a [FileDialog].
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to go up one directory in a [FileDialog].
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to focus the next [Control] in the scene. The focus behavior can be configured via [member Control.focus_next].
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to focus the previous [Control] in the scene. The focus behavior can be configured via [member Control.focus_previous].
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to delete a [GraphNode] in a [GraphEdit].
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to duplicate a [GraphNode] in a [GraphEdit].
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to go to the start position of a [Control] (e.g. first item in an [ItemList] or a [Tree]), matching the behavior of [constant KEY_HOME] on typical desktop UI systems.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to move left in the UI.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to open a context menu in a text field.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to go down a page in a [Control] (e.g. in an [ItemList] or a [Tree]), matching the behavior of [constant KEY_PAGEDOWN] on typical desktop UI systems.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to go up a page in a [Control] (e.g. in an [ItemList] or a [Tree]), matching the behavior of [constant KEY_PAGEUP] on typical desktop UI systems.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to paste from the clipboard.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to redo an undone action.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to move right in the UI.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to select an item in a [Control] (e.g. in an [ItemList] or a [Tree]).
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to swap input direction, i.e. change between left-to-right to right-to-left modes. Affects text-editting controls ([LineEdit], [TextEdit]).
If a selection is currently active with the last caret in text fields, searches for the next occurrence of the selection, adds a caret and selects the next occurrence.
If no selection is currently active with the last caret in text fields, selects the word currently under the caret.
The action can be performed sequentially for all occurrences of the selection of the last caret and for all existing carets.
The viewport is adjusted to the latest newly added caret.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to delete the character before the text cursor.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to delete [b]all[/b] text before the text cursor.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to delete all characters before the cursor up until a whitespace or punctuation character.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to move the text cursor to the start of the text.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to move the text cursor down.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to move the text cursor left.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to move the text cursor to the end of the line.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to move the text cursor to the start of the line.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to move the text cursor down one page.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to move the text cursor up one page.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to move the text cursor right.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to move the text cursor up.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to move the text cursor left to the next whitespace or punctuation.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to move the text cursor right to the next whitespace or punctuation.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
If there's only one caret active and with a selection, clears the selection.
In case there's more than one caret active, removes the secondary carets and clears their selections.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to accept an autocompetion hint.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to request autocompetion.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to accept an autocompetion hint, replacing existing text.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to delete the character after the text cursor.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to delete [b]all[/b] text after the text cursor.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to delete all characters after the cursor up until a whitespace or punctuation character.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to indent the current line.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to insert a new line at the position of the text cursor.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to insert a new line before the current one.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to insert a new line after the current one.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to scroll down one line of text.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to scroll up one line of text.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
If no selection is currently active, selects the word currently under the caret in text fields. If a selection is currently active, deselects the current selection.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to submit a text field.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to toggle [i]insert mode[/i] in a text field. While in insert mode, inserting new text overrides the character after the cursor, unless the next character is a new line.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to undo the most recent action.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
If [code]true[/code], key/touch/joystick events will be flushed just before every idle and physics frame.
If [code]false[/code], such events will be flushed only once per process frame, between iterations of the engine.
Enabling this can greatly improve the responsiveness to input, specially in devices that need to run multiple physics frames per visible (process) frame, because they can't run at the target frame rate.
[b]Note:[/b] Currently implemented only on Android.
If [code]true[/code], [method Input.is_action_just_pressed] and [method Input.is_action_just_released] will only return [code]true[/code] if the action is still in the respective state, i.e. an action that is pressed [i]and[/i] released on the same frame will be missed.
If [code]false[/code], no input will be lost.
[b]Note:[/b] You should in nearly all cases prefer the [code]false[/code] setting. The legacy behavior is to enable supporting old projects that rely on the old logic, without changes to script.
[b]Note:[/b] The driver in use can be overridden at runtime via the [code]--tablet-driver[/code] [url=$DOCS_URL/tutorials/editor/command_line_tutorial.html]command line argument[/url].
If [code]true[/code], text server break iteration rule sets, dictionaries and other optional data are included in the exported project.
[b]Note:[/b] "ICU / HarfBuzz / Graphite" text server data includes dictionaries for Burmese, Chinese, Japanese, Khmer, Lao and Thai as well as Unicode Standard Annex #29 and Unicode Standard Annex #14 word and line breaking rules. Data is about 4 MB large.
[b]Note:[/b] "Fallback" text server does not use additional data.
The expansion ratio to use during pseudolocalization. A value of [code]0.3[/code] is sufficient for most practical purposes, and will increase the length of each string by 30%.
If [code]true[/code], emulate bidirectional (right-to-left) text when pseudolocalization is enabled. This can be used to spot issues with RTL layout and UI mirroring that will crop up if the project is localized to RTL languages such as Arabic or Hebrew.
Skip placeholders for string formatting like [code]%s[/code] or [code]%f[/code] during pseudolocalization. Useful to identify strings which need additional control characters to display correctly.
If [code]true[/code], enables pseudolocalization for the project. This can be used to spot untranslatable strings or layout issues that may occur once the project is localized to languages that have longer strings than the source language.
[b]Note:[/b] This property is only read when the project starts. To toggle pseudolocalization at run-time, use [member TranslationServer.pseudolocalization_enabled] instead.
"ICU / HarfBuzz / Graphite" is the most advanced text driver, supporting right-to-left typesetting and complex scripts (for languages like Arabic, Hebrew, etc). The "Fallback" text driver does not support right-to-left typesetting and complex scripts.
[b]Note:[/b] The driver in use can be overridden at runtime via the [code]--text-driver[/code] [url=$DOCS_URL/tutorials/editor/command_line_tutorial.html]command line argument[/url].
[b]Note:[/b] There is an additional [code]Dummy[/code] text driver available, which disables all text rendering and font-related functionality. This driver is not listed in the project settings, but it can be enabled when running the editor or project using the [code]--text-driver Dummy[/code] [url=$DOCS_URL/tutorials/editor/command_line_tutorial.html]command line argument[/url].
This is used by servers when used in multi-threading mode (servers and visual). RIDs are preallocated to avoid stalling the server requesting them on threads. If servers get stalled too often when loading resources in a thread, increase this number.
If enabled 2D navigation regions will use edge connections to connect with other navigation regions within proximity of the navigation map edge connection margin. This setting only affects World2D default navigation maps.
If enabled 3D navigation regions will use edge connections to connect with other navigation regions within proximity of the navigation map edge connection margin. This setting only affects World3D default navigation maps.
Maximum number of characters allowed to send as output from the debugger. Over this value, content is dropped. This helps not to stall the debugger connection.
Default size of packet peer stream for deserializing Godot data (in bytes, specified as a power of two). The default value [code]16[/code] is equal to 65,536 bytes. Over this size, data is dropped.
The CA certificates bundle to use for TLS connections. If this is set to a non-empty value, this will [i]override[/i] Godot's default [url=https://github.com/godotengine/godot/blob/master/thirdparty/certs/ca-certificates.crt]Mozilla certificate bundle[/url]. If left empty, the default certificate bundle will be used.
[b]Note:[/b] Good values are in the range [code]0[/code] to [code]1[/code]. At value [code]0[/code] objects will keep moving with the same velocity. Values greater than [code]1[/code] will aim to reduce the velocity to [code]0[/code] in less than a second e.g. a value of [code]2[/code] will aim to reduce the velocity to [code]0[/code] in half a second. A value equal to or greater than the physics frame rate ([member ProjectSettings.physics/common/physics_ticks_per_second], [code]60[/code] by default) will bring the object to a stop in one iteration.
[b]Note:[/b] Good values are in the range [code]0[/code] to [code]1[/code]. At value [code]0[/code] objects will keep moving with the same velocity. Values greater than [code]1[/code] will aim to reduce the velocity to [code]0[/code] in less than a second e.g. a value of [code]2[/code] will aim to reduce the velocity to [code]0[/code] in half a second. A value equal to or greater than the physics frame rate ([member ProjectSettings.physics/common/physics_ticks_per_second], [code]60[/code] by default) will bring the object to a stop in one iteration.
If [code]true[/code], the 2D physics server runs on a separate thread, making better use of multi-core CPUs. If [code]false[/code], the 2D physics server runs on the main thread. Running the physics server on a separate thread can increase performance, but restricts API access to only physics process.
Threshold angular velocity under which a 2D physics body will be considered inactive. See [constant PhysicsServer2D.SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_THRESHOLD].
Threshold linear velocity under which a 2D physics body will be considered inactive. See [constant PhysicsServer2D.SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_THRESHOLD].
Maximum distance a shape can penetrate another shape before it is considered a collision. See [constant PhysicsServer2D.SPACE_PARAM_CONTACT_MAX_ALLOWED_PENETRATION].
Maximum distance a shape can be from another before they are considered separated and the contact is discarded. See [constant PhysicsServer2D.SPACE_PARAM_CONTACT_MAX_SEPARATION].
Maximum distance a pair of bodies has to move before their collision status has to be recalculated. See [constant PhysicsServer2D.SPACE_PARAM_CONTACT_RECYCLE_RADIUS].
Default solver bias for all physics constraints. Defines how much bodies react to enforce constraints. See [constant PhysicsServer2D.SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS].
Individual constraints can have a specific bias value (see [member Joint2D.bias]).
Default solver bias for all physics contacts. Defines how much bodies react to enforce contact separation. See [constant PhysicsServer2D.SPACE_PARAM_CONTACT_DEFAULT_BIAS].
Individual shapes can have a specific bias value (see [member Shape2D.custom_solver_bias]).
Number of solver iterations for all contacts and constraints. The greater the number of iterations, the more accurate the collisions will be. However, a greater number of iterations requires more CPU power, which can decrease performance. See [constant PhysicsServer2D.SPACE_PARAM_SOLVER_ITERATIONS].
[b]Note:[/b] Good values are in the range [code]0[/code] to [code]1[/code]. At value [code]0[/code] objects will keep moving with the same velocity. Values greater than [code]1[/code] will aim to reduce the velocity to [code]0[/code] in less than a second e.g. a value of [code]2[/code] will aim to reduce the velocity to [code]0[/code] in half a second. A value equal to or greater than the physics frame rate ([member ProjectSettings.physics/common/physics_ticks_per_second], [code]60[/code] by default) will bring the object to a stop in one iteration.
[b]Note:[/b] Good values are in the range [code]0[/code] to [code]1[/code]. At value [code]0[/code] objects will keep moving with the same velocity. Values greater than [code]1[/code] will aim to reduce the velocity to [code]0[/code] in less than a second e.g. a value of [code]2[/code] will aim to reduce the velocity to [code]0[/code] in half a second. A value equal to or greater than the physics frame rate ([member ProjectSettings.physics/common/physics_ticks_per_second], [code]60[/code] by default) will bring the object to a stop in one iteration.
If [code]true[/code], the 3D physics server runs on a separate thread, making better use of multi-core CPUs. If [code]false[/code], the 3D physics server runs on the main thread. Running the physics server on a separate thread can increase performance, but restricts API access to only physics process.
Threshold angular velocity under which a 3D physics body will be considered inactive. See [constant PhysicsServer3D.SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_THRESHOLD].
Threshold linear velocity under which a 3D physics body will be considered inactive. See [constant PhysicsServer3D.SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_THRESHOLD].
Maximum distance a shape can penetrate another shape before it is considered a collision. See [constant PhysicsServer3D.SPACE_PARAM_CONTACT_MAX_ALLOWED_PENETRATION].
Maximum distance a shape can be from another before they are considered separated and the contact is discarded. See [constant PhysicsServer3D.SPACE_PARAM_CONTACT_MAX_SEPARATION].
Maximum distance a pair of bodies has to move before their collision status has to be recalculated. See [constant PhysicsServer3D.SPACE_PARAM_CONTACT_RECYCLE_RADIUS].
Default solver bias for all physics contacts. Defines how much bodies react to enforce contact separation. See [constant PhysicsServer3D.SPACE_PARAM_CONTACT_DEFAULT_BIAS].
Individual shapes can have a specific bias value (see [member Shape3D.custom_solver_bias]).
Number of solver iterations for all contacts and constraints. The greater the number of iterations, the more accurate the collisions will be. However, a greater number of iterations requires more CPU power, which can decrease performance. See [constant PhysicsServer3D.SPACE_PARAM_SOLVER_ITERATIONS].
Controls the maximum number of physics steps that can be simulated each rendered frame. The default value is tuned to avoid "spiral of death" situations where expensive physics simulations trigger more expensive simulations indefinitely. However, the game will appear to slow down if the rendering FPS is less than [code]1 / max_physics_steps_per_frame[/code] of [member physics/common/physics_ticks_per_second]. This occurs even if [code]delta[/code] is consistently used in physics calculations. To avoid this, increase [member physics/common/max_physics_steps_per_frame] if you have increased [member physics/common/physics_ticks_per_second] significantly above its default value.
[b]Note:[/b] This property is only read when the project starts. To change the maximum number of simulated physics steps per frame at runtime, set [member Engine.max_physics_steps_per_frame] instead.
Controls how much physics ticks are synchronized with real time. For 0 or less, the ticks are synchronized. Such values are recommended for network games, where clock synchronization matters. Higher values cause higher deviation of in-game clock and real clock, but allows smoothing out framerate jitters. The default value of 0.5 should be fine for most; values above 2 could cause the game to react to dropped frames with a noticeable delay and are not recommended.
[b]Note:[/b] For best results, when using a custom physics interpolation solution, the physics jitter fix should be disabled by setting [member physics/common/physics_jitter_fix] to [code]0[/code].
The number of fixed iterations per second. This controls how often physics simulation and [method Node._physics_process] methods are run. See also [member application/run/max_fps].
[b]Note:[/b] This property is only read when the project starts. To change the physics FPS at runtime, set [member Engine.physics_ticks_per_second] instead.
[b]Note:[/b] Only [member physics/common/max_physics_steps_per_frame] physics ticks may be simulated per rendered frame at most. If more physics ticks have to be simulated per rendered frame to keep up with rendering, the project will appear to slow down (even if [code]delta[/code] is used consistently in physics calculations). Therefore, it is recommended to also increase [member physics/common/max_physics_steps_per_frame] if increasing [member physics/common/physics_ticks_per_second] significantly above its default value.
Controls how much of the original viewport size should be covered by the 2D signed distance field. This SDF can be sampled in [CanvasItem] shaders and is used for [GPUParticles2D] collision. Higher values allow portions of occluders located outside the viewport to still be taken into account in the generated signed distance field, at the cost of performance. If you notice particles falling through [LightOccluder2D]s as the occluders leave the viewport, increase this setting.
The percentage specified is added on each axis and on both sides. For example, with the default setting of 120%, the signed distance field will cover 20% of the viewport's size outside the viewport on each side (top, right, bottom, left).
[b]Note:[/b] This property is only read when the project starts. To change the 2D SDF oversizing percentage at runtime, use [method RenderingServer.viewport_set_sdf_oversize_and_scale] instead.
The resolution scale to use for the 2D signed distance field. Higher values lead to a more precise and more stable signed distance field as the camera moves, at the cost of performance. The default value (50%) renders at half the resolution of the viewport size on each axis, which means the SDF is generated with 25% of the viewport's pixel count.
[b]Note:[/b] This property is only read when the project starts. To change the 2D SDF resolution scale at runtime, use [method RenderingServer.viewport_set_sdf_oversize_and_scale] instead.
The size of the 2D shadow atlas in pixels. Higher values result in more precise [Light2D] shadows, at the cost of performance and video memory usage. The specified value is rounded up to the nearest power of 2.
[b]Note:[/b] This property is only read when the project starts. To change the 2D shadow atlas size at runtime, use [method RenderingServer.canvas_set_shadow_texture_size] instead.
If [code]true[/code], [CanvasItem] nodes will internally snap to full pixels. Their position can still be sub-pixel, but the decimals will not have effect. This can lead to a crisper appearance at the cost of less smooth movement, especially when [Camera2D] smoothing is enabled.
[b]Note:[/b] This property is only read when the project starts. To toggle 2D transform snapping at runtime, use [method RenderingServer.viewport_set_snap_2d_transforms_to_pixel] on the root [Viewport] instead.
[b]Note:[/b] [Control] nodes are snapped to the nearest pixel by default. This is controlled by [member gui/common/snap_controls_to_pixels].
If [code]true[/code], vertices of [CanvasItem] nodes will snap to full pixels. Only affects the final vertex positions, not the transforms. This can lead to a crisper appearance at the cost of less smooth movement, especially when [Camera2D] smoothing is enabled.
[b]Note:[/b] This property is only read when the project starts. To toggle 2D vertex snapping at runtime, use [method RenderingServer.viewport_set_snap_2d_vertices_to_pixel] on the root [Viewport] instead.
[b]Note:[/b] [Control] nodes are snapped to the nearest pixel by default. This is controlled by [member gui/common/snap_controls_to_pixels].
Sets the number of MSAA samples to use for 2D/Canvas rendering (as a power of two). MSAA is used to reduce aliasing around the edges of polygons. A higher MSAA value results in smoother edges but can be significantly slower on some hardware, especially integrated graphics due to their limited memory bandwidth. This has no effect on shader-induced aliasing or texture aliasing.
Sets the number of MSAA samples to use for 3D rendering (as a power of two). MSAA is used to reduce aliasing around the edges of polygons. A higher MSAA value results in smoother edges but can be significantly slower on some hardware, especially integrated graphics due to their limited memory bandwidth. See also [member rendering/scaling_3d/mode] for supersampling, which provides higher quality but is much more expensive. This has no effect on shader-induced aliasing or texture aliasing.
Sets the screen-space antialiasing mode for the default screen [Viewport]. Screen-space antialiasing works by selectively blurring edges in a post-process shader. It differs from MSAA which takes multiple coverage samples while rendering objects. Screen-space AA methods are typically faster than MSAA and will smooth out specular aliasing, but tend to make scenes appear blurry. The blurriness is partially counteracted by automatically using a negative mipmap LOD bias (see [member rendering/textures/default_filters/texture_mipmap_bias]).
If [code]true[/code], uses a fast post-processing filter to make banding significantly less visible in 3D. 2D rendering is [i]not[/i] affected by debanding unless the [member Environment.background_mode] is [constant Environment.BG_CANVAS].
In some cases, debanding may introduce a slightly noticeable dithering pattern. It's recommended to enable debanding only when actually needed since the dithering pattern will make lossless-compressed screenshots larger.
[b]Note:[/b] This property is only read when the project starts. To set debanding at run-time, set [member Viewport.use_debanding] on the root [Viewport] instead.
Enables Temporal Anti-Aliasing for the default screen [Viewport]. TAA works by jittering the camera and accumulating the images of the last rendered frames, motion vector rendering is used to account for camera and object motion. Enabling TAA can make the image blurrier, which is partially counteracted by automatically using a negative mipmap LOD bias (see [member rendering/textures/default_filters/texture_mipmap_bias]).
[b]Note:[/b] This property is only read when the project starts. To control the screen-space roughness limiter at runtime, call [method RenderingServer.screen_space_roughness_limiter_set_active] instead.
If [code]true[/code], enables a spatial filter to limit roughness in areas with high-frequency detail. This can help reduce specular aliasing to an extent, though not as much as enabling [member rendering/anti_aliasing/quality/use_taa]. This filter has a small performance cost, so consider disabling it if it doesn't benefit your scene noticeably.
[b]Note:[/b] The screen-space roughness limiter is only supported in the Forward+ and Mobile rendering methods, not Compatibility.
[b]Note:[/b] This property is only read when the project starts. To control the screen-space roughness limiter at runtime, call [method RenderingServer.screen_space_roughness_limiter_set_active] instead.
[b]Note:[/b] This property is only read when the project starts. To control the screen-space roughness limiter at runtime, call [method RenderingServer.screen_space_roughness_limiter_set_active] instead.
Sets the depth of field shape. Can be Box, Hexagon, or Circle. Box is the fastest. Circle is the most realistic, but also the most expensive to compute.
If [code]true[/code], jitters DOF samples to make effect slightly blurrier and hide lines created from low sample rates. This can result in a slightly grainy appearance when used with a low number of samples.
Disables [member rendering/driver/depth_prepass/enable] conditionally for certain vendors. By default, disables the depth prepass for mobile devices as mobile devices do not benefit from the depth prepass due to their unique architecture.
If [code]true[/code], performs a previous depth pass before rendering 3D materials. This increases performance significantly in scenes with high overdraw, when complex materials and lighting are used. However, in scenes with few occluded surfaces, the depth prepass may reduce performance. If your game is viewed from a fixed angle that makes it easy to avoid overdraw (such as top-down or side-scrolling perspective), consider disabling the depth prepass to improve performance. This setting can be changed at run-time to optimize performance depending on the scene currently being viewed.
[b]Note:[/b] Depth prepass is only supported when using the Forward+ or Compatibility rendering method. When using the Mobile rendering method, there is no depth prepass performed.
The thread model to use for rendering. Rendering on a thread may improve performance, but synchronizing to the main thread can cause a bit more jitter.
[b]Note:[/b] The [b]Multi-Threaded[/b] option is experimental, and has several known bugs which can lead to crashing, especially when using particles or resizing the window. Not recommended for use in production at this stage.
Default background clear color. Overridable per [Viewport] using its [Environment]. See [member Environment.background_mode] and [member Environment.background_color] in particular. To change this default color programmatically, use [method RenderingServer.set_default_clear_color].
[Environment] that will be used as a fallback environment in case a scene does not specify its own environment. The default environment is loaded in at scene load time regardless of whether you have set an environment or not. If you do not rely on the fallback environment, you do not need to set this property.
Sets the quality for rough screen-space reflections. Turning off will make all screen space reflections sharp, while higher values make rough reflections look better.
Quality target to use when [member rendering/environment/ssao/quality] is set to [code]Ultra[/code]. A value of [code]0.0[/code] provides a quality and speed similar to [code]Medium[/code] while a value of [code]1.0[/code] provides much higher quality than any of the other settings at the cost of performance.
Number of blur passes to use when computing screen-space ambient occlusion. A higher number will result in a smoother look, but will be slower to compute and will have less high-frequency detail.
If [code]true[/code], screen-space ambient occlusion will be rendered at half size and then upscaled before being added to the scene. This is significantly faster but may miss small details. If [code]false[/code], screen-space ambient occlusion will be rendered at full size.
Sets the quality of the screen-space ambient occlusion effect. Higher values take more samples and so will result in better quality, at the cost of performance. Setting to [code]Ultra[/code] will use the [member rendering/environment/ssao/adaptive_target] setting.
Quality target to use when [member rendering/environment/ssil/quality] is set to [code]Ultra[/code]. A value of [code]0.0[/code] provides a quality and speed similar to [code]Medium[/code] while a value of [code]1.0[/code] provides much higher quality than any of the other settings at the cost of performance. When using the adaptive target, the performance cost scales with the complexity of the scene.
Number of blur passes to use when computing screen-space indirect lighting. A higher number will result in a smoother look, but will be slower to compute and will have less high-frequency detail.
If [code]true[/code], screen-space indirect lighting will be rendered at half size and then upscaled before being added to the scene. This is significantly faster but may miss small details and may result in some objects appearing to glow at their edges.
Sets the quality of the screen-space indirect lighting effect. Higher values take more samples and so will result in better quality, at the cost of performance. Setting to [code]Ultra[/code] will use the [member rendering/environment/ssil/adaptive_target] setting.
Scales the depth over which the subsurface scattering effect is applied. A high value may allow light to scatter into a part of the mesh or another mesh that is close in screen space but far in depth. See also [member rendering/environment/subsurface_scattering/subsurface_scattering_scale].
[b]Note:[/b] This property is only read when the project starts. To set the subsurface scattering depth scale at runtime, call [method RenderingServer.sub_surface_scattering_set_scale] instead.
Sets the quality of the subsurface scattering effect. Higher values are slower but look nicer. This affects the rendering of materials that have [member BaseMaterial3D.subsurf_scatter_enabled] set to [code]true[/code], along with [ShaderMaterial]s that set [code]SSS_STRENGTH[/code].
[b]Note:[/b] This property is only read when the project starts. To set the subsurface scattering quality at runtime, call [method RenderingServer.sub_surface_scattering_set_quality] instead.
Scales the distance over which samples are taken for subsurface scattering effect. Changing this does not impact performance, but higher values will result in significant artifacts as the samples will become obviously spread out. A lower value results in a smaller spread of scattered light. See also [member rendering/environment/subsurface_scattering/subsurface_scattering_depth_scale].
[b]Note:[/b] This property is only read when the project starts. To set the subsurface scattering scale at runtime, call [method RenderingServer.sub_surface_scattering_set_scale] instead.
Enables filtering of the volumetric fog effect prior to integration. This substantially blurs the fog which reduces fine details but also smooths out harsh edges and aliasing artifacts. Disable when more detail is required.
Number of slices to use along the depth of the froxel buffer for volumetric fog. A lower number will be more efficient but may result in artifacts appearing during camera movement. See also [member Environment.volumetric_fog_length].
Base size used to determine size of froxel buffer in the camera X-axis and Y-axis. The final size is scaled by the aspect ratio of the screen, so actual values may differ from what is set. Set a larger size for more detailed fog, set a smaller size for better performance.
Sets the driver to be used by the renderer when using the Compatibility renderer. This property can not be edited directly, instead, set the driver using the platform-specific overrides.
Maximum number of canvas items commands that can be drawn in a single viewport update. If more render commands are issued they will be ignored. Decreasing this limit may improve performance on bandwidth limited devices. Increase this limit if you find that not all objects are being drawn in a frame.
If [code]true[/code], disables the threaded optimization feature from the NVIDIA drivers, which are known to cause stuttering in most OpenGL applications.
[b]Note:[/b] This setting only works on Windows, as threaded optimization is disabled by default on other platforms.
If [code]true[/code], renders [VoxelGI] and SDFGI ([member Environment.sdfgi_enabled]) buffers at halved resolution (e.g. 960×540 when the viewport size is 1920×1080). This improves performance significantly when VoxelGI or SDFGI is enabled, at the cost of artifacts that may be visible on polygon edges. The loss in quality becomes less noticeable as the viewport resolution increases. [LightmapGI] rendering is not affected by this setting.
[b]Note:[/b] This property is only read when the project starts. To set half-resolution GI at run-time, call [method RenderingServer.gi_set_use_half_resolution] instead.
The number of frames to use for converging signed distance field global illumination. Higher values lead to a less noisy result, at the cost of taking a longer time to fully converge. This means the scene's global illumination will be too dark for a longer period of time, especially when the camera moves fast. The actual convergence speed depends on rendered framerate. For example, with the default setting of 30 frames, rendering at 60 FPS will make SDFGI fully converge after 0.5 seconds. See also [member rendering/global_illumination/sdfgi/frames_to_update_lights] and [member rendering/global_illumination/sdfgi/probe_ray_count].
[b]Note:[/b] This property is only read when the project starts. To control SDFGI convergence speed at runtime, call [method RenderingServer.environment_set_sdfgi_frames_to_converge] instead.
The number of frames over which dynamic lights should be updated in signed distance field global illumination. Higher values take more time to update indirect lighting coming from dynamic lights, but result in better performance when many dynamic lights are present. See also [member rendering/global_illumination/sdfgi/frames_to_converge] and [member rendering/global_illumination/sdfgi/probe_ray_count].
[b]Note:[/b] This only affects [Light3D] nodes whose [member Light3D.light_bake_mode] is [constant Light3D.BAKE_DYNAMIC] (which is the default). Consider making non-moving lights use the [constant Light3D.BAKE_STATIC] bake mode to improve performance.
[b]Note:[/b] This property is only read when the project starts. To control SDFGI light update speed at runtime, call [method RenderingServer.environment_set_sdfgi_frames_to_update_light] instead.
The number of rays to throw per frame when computing signed distance field global illumination. Higher values lead to a less noisy result, at the cost of performance. See also [member rendering/global_illumination/sdfgi/frames_to_converge] and [member rendering/global_illumination/sdfgi/frames_to_update_lights].
[b]Note:[/b] This property is only read when the project starts. To control SDFGI quality at runtime, call [method RenderingServer.environment_set_sdfgi_ray_count] instead.
The VoxelGI quality to use. High quality leads to more precise lighting and better reflections, but is slower to render. This setting does not affect the baked data and doesn't require baking the [VoxelGI] again to apply.
[b]Note:[/b] This property is only read when the project starts. To control VoxelGI quality at runtime, call [method RenderingServer.voxel_gi_set_quality] instead.
The maximum number of rays that can be thrown per pass when baking lightmaps with [LightmapGI]. Depending on the scene, adjusting this value may result in higher GPU utilization when baking lightmaps, leading to faster bake times.
The maximum number of rays that can be thrown per pass when baking dynamic object lighting in [LightmapProbe]s with [LightmapGI]. Depending on the scene, adjusting this value may result in higher GPU utilization when baking lightmaps, leading to faster bake times.
The number of rays to use for baking dynamic object lighting in [LightmapProbe]s when [member LightmapGI.quality] is [constant LightmapGI.BAKE_QUALITY_HIGH].
The number of rays to use for baking dynamic object lighting in [LightmapProbe]s when [member LightmapGI.quality] is [constant LightmapGI.BAKE_QUALITY_LOW].
The number of rays to use for baking dynamic object lighting in [LightmapProbe]s when [member LightmapGI.quality] is [constant LightmapGI.BAKE_QUALITY_MEDIUM].
The number of rays to use for baking dynamic object lighting in [LightmapProbe]s when [member LightmapGI.quality] is [constant LightmapGI.BAKE_QUALITY_ULTRA].
The texel_size that is used to calculate the [member Mesh.lightmap_size_hint] on [PrimitiveMesh] resources if [member PrimitiveMesh.add_uv2] is enabled.
The framerate-independent update speed when representing dynamic object lighting from [LightmapProbe]s. Higher values make dynamic object lighting update faster. Higher values can prevent fast-moving objects from having "outdated" indirect lighting displayed on them, at the cost of possible flickering when an object moves from a bright area to a shaded area.
Use 16 bits for the directional shadow depth map. Enabling this results in shadows having less precision and may result in shadow acne, but can lead to performance improvements on some devices.
The directional shadow's size in pixels. Higher values will result in sharper shadows, at the cost of performance. The value is rounded up to the nearest power of 2.
Quality setting for shadows cast by [DirectionalLight3D]s. Higher quality settings use more samples when reading from shadow maps and are thus slower. Low quality settings may result in shadows looking grainy.
[b]Note:[/b] The Soft Very Low setting will automatically multiply [i]constant[/i] shadow blur by 0.75x to reduce the amount of noise visible. This automatic blur change only affects the constant blur factor defined in [member Light3D.shadow_blur], not the variable blur performed by [DirectionalLight3D]s' [member Light3D.light_angular_distance].
[b]Note:[/b] The Soft High and Soft Ultra settings will automatically multiply [i]constant[/i] shadow blur by 1.5× and 2× respectively to make better use of the increased sample count. This increased blur also improves stability of dynamic object shadows.
Lower-end override for [member rendering/lights_and_shadows/directional_shadow/soft_shadow_filter_quality] on mobile devices, due to performance concerns or driver support.
Use 16 bits for the omni/spot shadow depth map. Enabling this results in shadows having less precision and may result in shadow acne, but can lead to performance improvements on some devices.
Lower-end override for [member rendering/lights_and_shadows/positional_shadow/atlas_size] on mobile devices, due to performance concerns or driver support.
Quality setting for shadows cast by [OmniLight3D]s and [SpotLight3D]s. Higher quality settings use more samples when reading from shadow maps and are thus slower. Low quality settings may result in shadows looking grainy.
[b]Note:[/b] The Soft Very Low setting will automatically multiply [i]constant[/i] shadow blur by 0.75x to reduce the amount of noise visible. This automatic blur change only affects the constant blur factor defined in [member Light3D.shadow_blur], not the variable blur performed by [DirectionalLight3D]s' [member Light3D.light_angular_distance].
[b]Note:[/b] The Soft High and Soft Ultra settings will automatically multiply shadow blur by 1.5× and 2× respectively to make better use of the increased sample count. This increased blur also improves stability of dynamic object shadows.
Lower-end override for [member rendering/lights_and_shadows/positional_shadow/soft_shadow_filter_quality] on mobile devices, due to performance concerns or driver support.
Enables the use of physically based units for light sources. Physically based units tend to be much larger than the arbitrary units used by Godot, but they can be used to match lighting within Godot to real-world lighting. Due to the large dynamic range of lighting conditions present in nature, Godot bakes exposure into the various lighting quantities before rendering. Most light sources bake exposure automatically at run time based on the active [CameraAttributes] resource, but [LightmapGI] and [VoxelGI] require a [CameraAttributes] resource to be set at bake time to reduce the dynamic range. At run time, Godot will automatically reconcile the baked exposure with the active exposure to ensure lighting remains consistent.
The maximum number of clustered elements ([OmniLight3D] + [SpotLight3D] + [Decal] + [ReflectionProbe]) that can be rendered at once in the camera view. If there are more clustered elements present in the camera view, some of them will not be rendered (leading to pop-in during camera movement). Enabling distance fade on lights and decals ([member Light3D.distance_fade_enabled], [member Decal.distance_fade_enabled]) can help avoid reaching this limit.
Decreasing this value may improve GPU performance on certain setups, even if the maximum number of clustered elements is never reached in the project.
[b]Note:[/b] This setting is only effective when using the Forward+ rendering method, not Mobile and Compatibility.
Max number of omnilights and spotlights renderable per object. At the default value of 8, this means that each surface can be affected by up to 8 omnilights and 8 spotlights. This is further limited by hardware support and [member rendering/limits/opengl/max_renderable_lights]. Setting this low will slightly reduce memory usage, may decrease shader compile times, and may result in faster rendering on low-end, mobile, or web devices.
Max number of elements renderable in a frame. If more elements than this are visible per frame, they will not be drawn. Keep in mind elements refer to mesh surfaces and not meshes themselves. Setting this low will slightly reduce memory usage and may decrease shader compile times, particularly on web. For most uses, the default value is suitable, but consider lowering as much as possible on web export.
Max number of positional lights renderable in a frame. If more lights than this number are used, they will be ignored. Setting this low will slightly reduce memory usage and may decrease shader compile times, particularly on web. For most uses, the default value is suitable, but consider lowering as much as possible on web export.
The automatic LOD bias to use for meshes rendered within the [ReflectionProbe]. Higher values will use less detailed versions of meshes that have LOD variations generated. If set to [code]0.0[/code], automatic LOD is disabled. Increase [member rendering/mesh_lod/lod_change/threshold_pixels] to improve performance at the cost of geometry detail.
[b]Note:[/b] [member rendering/mesh_lod/lod_change/threshold_pixels] does not affect [GeometryInstance3D] visibility ranges (also known as "manual" LOD or hierarchical LOD).
[b]Note:[/b] This property is only read when the project starts. To adjust the automatic LOD threshold at runtime, set [member Viewport.mesh_lod_threshold] on the root [Viewport].
The [url=https://en.wikipedia.org/wiki/Bounding_volume_hierarchy]Bounding Volume Hierarchy[/url] quality to use when rendering the occlusion culling buffer. Higher values will result in more accurate occlusion culling, at the cost of higher CPU usage. See also [member rendering/occlusion_culling/occlusion_rays_per_thread].
[b]Note:[/b] This property is only read when the project starts. To adjust the BVH build quality at runtime, use [method RenderingServer.viewport_set_occlusion_culling_build_quality].
The number of occlusion rays traced per CPU thread. Higher values will result in more accurate occlusion culling, at the cost of higher CPU usage. The occlusion culling buffer's pixel count is roughly equal to [code]occlusion_rays_per_thread * number_of_logical_cpu_cores[/code], so it will depend on the system's CPU. Therefore, CPUs with fewer cores will use a lower resolution to attempt keeping performance costs even across devices. See also [member rendering/occlusion_culling/bvh_build_quality].
[b]Note:[/b] This property is only read when the project starts. To adjust the number of occlusion rays traced per thread at runtime, use [method RenderingServer.viewport_set_occlusion_rays_per_thread].
If [code]true[/code], [OccluderInstance3D] nodes will be usable for occlusion culling in 3D in the root viewport. In custom viewports, [member Viewport.use_occlusion_culling] must be set to [code]true[/code] instead.
[b]Note:[/b] Enabling occlusion culling has a cost on the CPU. Only enable occlusion culling if you actually plan to use it. Large open scenes with few or no objects blocking the view will generally not benefit much from occlusion culling. Large open scenes generally benefit more from mesh LOD and visibility ranges ([member GeometryInstance3D.visibility_range_begin] and [member GeometryInstance3D.visibility_range_end]) compared to occlusion culling.
Number of cubemaps to store in the reflection atlas. The number of [ReflectionProbe]s in a scene will be limited by this amount. A higher number requires more VRAM.
Lower-end override for [member rendering/reflections/reflection_atlas/reflection_size] on mobile devices, due to performance concerns or driver support.
Use a higher quality variant of the fast filtering algorithm. Significantly slower than using default quality, but results in smoother reflections. Should only be used when the scene is especially detailed.
Sets the number of samples to take when using importance sampling for [Sky]s and [ReflectionProbe]s. A higher value will result in smoother, higher quality reflections, but increases time to calculate radiance maps. In general, fewer samples are needed for simpler, low dynamic range environments while more samples are needed for HDR environments and environments with a high level of detail.
If [code]true[/code], uses texture arrays instead of mipmaps for reflection probes and panorama backgrounds (sky). This reduces jitter noise and upscaling artifacts on reflections, but is significantly slower to compute and uses [member rendering/reflections/sky_reflections/roughness_layers] times more memory.
Lower-end override for [member rendering/reflections/sky_reflections/texture_array_reflections] on mobile devices, due to performance concerns or driver support.
[b]Forward Plus[/b]: High-end renderer designed for Desktop devices. Has a higher base overhead, but scales well with complex scenes. Not suitable for older devices or mobile.
[b]Mobile[/b]: Modern renderer designed for mobile devices. Has a lower base overhead than Forward Plus, but does not scale as well to large scenes with many elements.
[b]GL Compatibility[/b]: Low-end renderer designed for older devices. Based on the limitations of the OpenGL 3.3/ OpenGL ES 3.0 / WebGL 2 APIs.
Sets the driver to be used by the renderer when using a RenderingDevice-based renderer like the clustered renderer or the mobile renderer. This property can not be edited directly, instead, set the driver using the platform-specific overrides.
Determines how sharp the upscaled image will be when using the FSR upscaling mode. Sharpness halves with every whole number. Values go from 0.0 (sharpest) to 2.0. Values above 2.0 won't make a visible difference.
Sets the scaling 3D mode. Bilinear scaling renders at different resolution to either undersample or supersample the viewport. FidelityFX Super Resolution 1.0, abbreviated to FSR, is an upscaling technology that produces high quality images at fast framerates by using a spatially-aware upscaling algorithm. FSR is slightly more expensive than bilinear, but it produces significantly higher image quality. On particularly low-end GPUs, the added cost of FSR may not be worth it (compared to using bilinear scaling with a slightly higher resolution scale to match performance).
[b]Note:[/b] FSR is only effective when using the Forward+ rendering method, not Mobile or Compatibility. If using an incompatible rendering method, FSR will fall back to bilinear scaling.
Scales the 3D render buffer based on the viewport size uses an image filter specified in [member rendering/scaling_3d/mode] to scale the output image to the full viewport size. Values lower than [code]1.0[/code] can be used to speed up 3D rendering at the cost of quality (undersampling). Values greater than [code]1.0[/code] are only valid for bilinear mode and can be used to improve 3D rendering quality at a high performance cost (supersampling). See also [member rendering/anti_aliasing/quality/msaa_3d] for multi-sample antialiasing, which is significantly cheaper but only smooths the edges of polygons.
Lower-end override for [member rendering/shading/overrides/force_lambert_over_burley] on mobile devices, due to performance concerns or driver support.
If [code]true[/code], forces vertex shading for all rendering. This can increase performance a lot, but also reduces quality immensely. Can be used to optimize performance on low-end mobile devices.
The filtering quality to use for [Decal] nodes. When using one of the anisotropic filtering modes, the anisotropic filtering level is controlled by [member rendering/textures/default_filters/anisotropic_filtering_level].
Sets the maximum number of samples to take when using anisotropic filtering on textures (as a power of two). A higher sample count will result in sharper textures at oblique angles, but is more expensive to compute. A value of [code]0[/code] forcibly disables anisotropic filtering, even on materials where it is enabled.
The anisotropic filtering level also affects decals and light projectors if they are configured to use anisotropic filtering. See [member rendering/textures/decals/filter] and [member rendering/textures/light_projectors/filter].
[b]Note:[/b] For performance reasons, anisotropic filtering [i]is not enabled by default[/i] on 2D and 3D materials. For this setting to have an effect in 3D, set [member BaseMaterial3D.texture_filter] to [constant BaseMaterial3D.TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC] or [constant BaseMaterial3D.TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC] on materials. For this setting to have an effect in 2D, set [member CanvasItem.texture_filter] to [constant CanvasItem.TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC] or [constant CanvasItem.TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC] on the [CanvasItem] node displaying the texture (or in [CanvasTexture]). However, anisotropic filtering is rarely useful in 2D, so only enable it for textures in 2D if it makes a meaningful visual difference.
Affects the final texture sharpness by reading from a lower or higher mipmap (also called "texture LOD bias"). Negative values make mipmapped textures sharper but grainier when viewed at a distance, while positive values make mipmapped textures blurrier (even when up close).
Enabling temporal antialiasing ([member rendering/anti_aliasing/quality/use_taa]) will automatically apply a [code]-0.5[/code] offset to this value, while enabling FXAA ([member rendering/anti_aliasing/quality/screen_space_aa]) will automatically apply a [code]-0.25[/code] offset to this value. If both TAA and FXAA are enabled at the same time, an offset of [code]-0.75[/code] is applied to this value.
[b]Note:[/b] If [member rendering/scaling_3d/scale] is lower than [code]1.0[/code] (exclusive), [member rendering/textures/default_filters/texture_mipmap_bias] is used to adjust the automatic mipmap bias which is calculated internally based on the scale factor. The formula for this is [code]log2(scaling_3d_scale) + mipmap_bias[/code].
[b]Note:[/b] This property is only read when the project starts. To change the mipmap LOD bias at run-time, set [member Viewport.texture_mipmap_bias] instead.
If [code]true[/code], uses nearest-neighbor mipmap filtering when using mipmaps (also called "bilinear filtering"), which will result in visible seams appearing between mipmap stages. This may increase performance in mobile as less memory bandwidth is used. If [code]false[/code], linear mipmap filtering (also called "trilinear filtering") is used.
The filtering quality to use for [OmniLight3D] and [SpotLight3D] projectors. When using one of the anisotropic filtering modes, the anisotropic filtering level is controlled by [member rendering/textures/default_filters/anisotropic_filtering_level].
If [code]true[/code], the texture importer will import VRAM-compressed textures using the Ericsson Texture Compression 2 algorithm for lower quality textures and normal maps and Adaptable Scalable Texture Compression algorithm for high quality textures (in 4x4 block size).
[b]Note:[/b] This setting is an override. The texture importer will always import the format the host platform needs, even if this is set to [code]false[/code].
[b]Note:[/b] Changing this setting does [i]not[/i] impact textures that were already imported before. To make this setting apply to textures that were already imported, exit the editor, remove the [code].godot/imported/[/code] folder located inside the project folder then restart the editor (see [member application/config/use_hidden_project_data_directory]).
If [code]true[/code], the texture importer will import VRAM-compressed textures using the S3 Texture Compression algorithm (DXT1-5) for lower quality textures and the BPTC algorithm (BC6H and BC7) for high quality textures. This algorithm is only supported on PC desktop platforms and consoles.
[b]Note:[/b] This setting is an override. The texture importer will always import the format the host platform needs, even if this is set to [code]false[/code].
[b]Note:[/b] Changing this setting does [i]not[/i] impact textures that were already imported before. To make this setting apply to textures that were already imported, exit the editor, remove the [code].godot/imported/[/code] folder located inside the project folder then restart the editor (see [member application/config/use_hidden_project_data_directory]).
The default compression method for WebP. Affects both lossy and lossless WebP. A higher value results in smaller files at the cost of compression speed. Decompression speed is mostly unaffected by the compression method. Supported values are 0 to 6. Note that compression methods above 4 are very slow and offer very little savings.
If [code]true[/code], enables [member Viewport.use_hdr_2d] on the root viewport. This allows 2D rendering to take advantage of effects requiring high dynamic range (e.g. 2D glow).
If [code]true[/code], enables [member Viewport.transparent_bg] on the root viewport. This allows per-pixel transparency to be effective after also enabling [member display/window/size/transparent] and [member display/window/per_pixel_transparency/allowed].
Set the default Variable Rate Shading (VRS) mode for the main viewport. See [member Viewport.vrs_mode] to change this at runtime, and [enum Viewport.VRSMode] for possible values.
If [member rendering/vrs/mode] is set to [b]Texture[/b], this is the path to default texture loaded as the VRS image.
The texture [i]must[/i] use a lossless compression format so that colors can be matched precisely. The following VRS densities are mapped to various colors, with brighter colors representing a lower level of shading precision:
[codeblock]
- 1x1 = rgb(0, 0, 0) - #000000
- 1x2 = rgb(0, 85, 0) - #005500
- 2x1 = rgb(85, 0, 0) - #550000
- 2x2 = rgb(85, 85, 0) - #555500
- 2x4 = rgb(85, 170, 0) - #55aa00
- 4x2 = rgb(170, 85, 0) - #aa5500
- 4x4 = rgb(170, 170, 0) - #aaaa00
- 4x8 = rgb(170, 255, 0) - #aaff00 - Not supported on most hardware
- 8x4 = rgb(255, 170, 0) - #ffaa00 - Not supported on most hardware
- 8x8 = rgb(255, 255, 0) - #ffff00 - Not supported on most hardware
If [code]true[/code], OpenXR will manage the depth buffer and use the depth buffer for advanced reprojection provided this is supported by the XR runtime. Note that some rendering features in Godot can't be used with this feature.