This commit makes operator[] on Vector const and adds a write proxy to it. From
now on writes to Vectors need to happen through the .write proxy. So for
instance:
Vector<int> vec;
vec.push_back(10);
std::cout << vec[0] << std::endl;
vec.write[0] = 20;
Failing to use the .write proxy will cause a compilation error.
In addition COWable datatypes can now embed a CowData pointer to their data.
This means that String, CharString, and VMap no longer use or derive from
Vector.
_ALWAYS_INLINE_ and _FORCE_INLINE_ are now equivalent for debug and non-debug
builds. This is a lot faster for Vector in the editor and while running tests.
The reason why this difference used to exist is because force-inlined methods
used to give a bad debugging experience. After extensive testing with modern
compilers this is no longer the case.
Fixes most current reports on Coverity Scan of uninitialized scalar
variable (CWE-457): https://cwe.mitre.org/data/definitions/457.html
These happen most of the time (in our code) when instanciating structs
without a constructor (or with an incomplete one), and later returning
the instance. This is sometimes intended though, as some parameters are
only used in some situations and should not be double-initialized for
performance reasons (e.g. `constant` in ShaderLanguage::Token).
Also ensure that get_scale doesn't arbitrarlity change the signs of scales, ensuring that the combination of get_rotation and get_scale gives the correct basis.
Added various missing functions and constructors.
Should close#17968.
The ear clipping algorithm used to triangulate polygons has a slightly too conservative point-in-triangle test which can, in some configurations prevent it from finding a possible tessellation. Relaxing the test by considering that points exactly on edges don't belong the triangle fixes the issue. Changing the semantic of the test is safe because no other code makes use of it. A more detailed explanation can be found in issue #16395.
Fixes#16395.
Using `misc/scripts/fix_headers.py` on all Godot files.
Some missing header guards were added, and the header inclusion order
was fixed in the Bullet module.
That change was borne out of a confusion regarding the meaning of "local" in #14569.
Affine transformations in Spatial simply correspond to affine operations of its Transform. Such operations take place in a coordinate system that is defined by the parent Spatial. When there is no parent, they correspond to operations in the global coordinate system.
This coordinate system, which is relative to the parent, has been referred to as the local coordinate system in the docs so far, but this sloppy language has apparently confused some users, making them think that the local coordinate system refers to the one whose axes are "painted" on the Spatial node itself.
To avoid such conceptual conflations and misunderstandings in the future, the parent-relative local system is now referred to as "parent-local", and the object-relative local system is called "object-local" in the docs.
This commit adds the functionality "requested" in #14569, not by changing how rotate/scale/translate works, but by adding new rotate_object_local, scale_object_local and translate_object_local functions. Also, for completeness, there is now global_scale.
This commit also updates another part of the docs regarding the rotation property of Spatial, which also leads to confusion among some users.
It had been missed in d09160a8b6 and broke compilation
for those platforms.
Took the opportunity to run clang-format on the code base to fix some corner cases
that went through our static tests/were overlooked recently.
Rename user facing methods and variables as well as the corresponding
C++ methods according to the folloming changes:
* pos -> position
* rot -> rotation
* loc -> location
C++ variables are left as is.
Those functions were added in #8277 but they did more harm than good. They're subtle, don't do what people think and requires users to understand the non-uniqueness of polar decomposition. They ended up confusing people.
Until we store additional information enough to make a unique polar decomposition, these functions shouldn't be a part of Basis.
As discussed in issues #1479 and #9782, choosing the up axis (which is Y in Godot) as the axis of the last (or first) rotation is helpful in practical use cases.
This also aligns Godot's convention with Unity, helping with a smoother transition for people who are used to working with Unity (issue #9905).
Internally, both XYZ and YXZ functions are kept, for potential future applications.