So far we left most temporary files lying around, so this attempts to
fix that.
I added a helper method to DirAccess to factor out the boilerplate of
creating a DirAccess, checking if the file exists, remove it or print
an error on failure.
As of 3.1 and later, we have too many thirdparty C++ dependencies
and some internal uses of `new` and `delete` too for it to make
sense to build without the STL on Android.
The option has been broken since 3.0, and the "System STL" that we
relied on for basic support of `new` and `delete` is likely to be
dropped from the NDK:
https://android.googlesource.com/platform/ndk/+/ndk-release-r20/docs/BuildSystemMaintainers.md#System-STL
For clarity, assign-to-release idiom for PoolVector::Read/Write
replaced with a function call.
Existing uses replaced (or removed if already handled by scope)
It's the recommended way to set those, and is more portable
(automatically prepends -D for GCC/Clang and /D for MSVC).
We still use CPPFLAGS for some pre-processor flags which are not
defines.
Fixes#17004
Currently the keydown and keyup messages are handled with method like this:
if ((source & InputDevice.SOURCE_JOYSTICK) == InputDevice.SOURCE_JOYSTICK
|| (source & InputDevice.SOURCE_DPAD) == InputDevice.SOURCE_DPAD
|| (source & InputDevice.SOURCE_GAMEPAD) == InputDevice.SOURCE_GAMEPAD) {
// joystick input
}
else
{
// keyboard input
}
The constant for SOURCE_DPAD is 513
10 0000 0001
and the constant for SOURCE_KEYBOARD is 257
1 0000 0001
However, rather confusingly, for many keyboards the source sent by android is 769
11 0000 0001
Thus the keyboard is passing the check as being a DPAD and being processed as a joystick rather than keyboard. This PR handles the specific case of 769, allowing input from physical keyboards.
This is a new singleton where camera sources such as webcams or cameras on a mobile phone can register themselves with the Server.
Other parts of Godot can interact with this to obtain images from the camera as textures.
This work includes additions to the Visual Server to use this functionality to present the camera image in the background. This is specifically targetted at AR applications.
It's not necessary, but the vast majority of calls of error macros
do have an ending semicolon, so it's best to be consistent.
Most WARN_DEPRECATED calls did *not* have a semicolon, but there's
no reason for them to be treated differently.
text=auto works well in Git 2.10+ but it's broken in previous versions,
which are still used in production on e.g. Ubuntu 16.04 LTS.
Also fix a couple missed text files with CRLF terminators.
.bat files likely require it to be processed properly on Windows,
but core.autocrlf should take care of converting them on the fly
when checking out on Windows.
Those were disable to keep size small, and on Android avoid the dependency on the STL,
but for tools build (editor) this is not really a concern.
Note: as of today it's not possible to build tools=yes for those platforms, but this
change is one of the necessary steps to enable it.
Fixes#25262.
Reasoning: ID is not an acronym, it is simply short for identification, so it logically should not be capitalized. But even if it was an acronym, other acronyms in Godot are not capitalized, like p_rid, p_ip, and p_json.
Include paths are processed from left to right, so we use Prepend to
ensure that paths to bundled thirdparty files will have precedence over
system paths (e.g. `/usr/include` should have lowest priority).
Many contributors (me included) did not fully understand what CCFLAGS,
CXXFLAGS and CPPFLAGS refer to exactly, and were thus not using them
in the way they are intended to be.
As per the SCons manual: https://www.scons.org/doc/HTML/scons-user/apa.html
- CCFLAGS: General options that are passed to the C and C++ compilers.
- CFLAGS: General options that are passed to the C compiler (C only;
not C++).
- CXXFLAGS: General options that are passed to the C++ compiler. By
default, this includes the value of $CCFLAGS, so that setting
$CCFLAGS affects both C and C++ compilation.
- CPPFLAGS: User-specified C preprocessor options. These will be
included in any command that uses the C preprocessor, including not
just compilation of C and C++ source files [...], but also [...]
Fortran [...] and [...] assembly language source file[s].
TL;DR: Compiler options go to CCFLAGS, unless they must be restricted
to either C (CFLAGS) or C++ (CXXFLAGS). Preprocessor defines go to
CPPFLAGS.