virtualx-engine/servers/physics_2d/space_2d_sw.cpp

1443 lines
48 KiB
C++
Raw Normal View History

/**************************************************************************/
/* space_2d_sw.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "space_2d_sw.h"
2017-08-27 21:07:15 +02:00
#include "collision_solver_2d_sw.h"
#include "core/os/os.h"
#include "core/pair.h"
#include "physics_2d_server_sw.h"
#define TEST_MOTION_MARGIN_MIN_VALUE 0.0001
#define TEST_MOTION_MIN_CONTACT_DEPTH_FACTOR 0.05
_FORCE_INLINE_ static bool _can_collide_with(CollisionObject2DSW *p_object, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
if (!(p_object->get_collision_layer() & p_collision_mask)) {
return false;
}
if (p_object->get_type() == CollisionObject2DSW::TYPE_AREA && !p_collide_with_areas) {
return false;
}
if (p_object->get_type() == CollisionObject2DSW::TYPE_BODY && !p_collide_with_bodies) {
return false;
}
return true;
}
int Physics2DDirectSpaceStateSW::_intersect_point_impl(const Vector2 &p_point, ShapeResult *r_results, int p_result_max, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas, bool p_pick_point, bool p_filter_by_canvas, ObjectID p_canvas_instance_id) {
if (p_result_max <= 0) {
return 0;
}
Rect2 aabb;
aabb.position = p_point - Vector2(0.00001, 0.00001);
aabb.size = Vector2(0.00002, 0.00002);
int amount = space->broadphase->cull_aabb(aabb, space->intersection_query_results, Space2DSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results);
int cc = 0;
for (int i = 0; i < amount; i++) {
if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) {
continue;
}
if (p_exclude.has(space->intersection_query_results[i]->get_self())) {
continue;
}
const CollisionObject2DSW *col_obj = space->intersection_query_results[i];
if (p_pick_point && !col_obj->is_pickable()) {
continue;
}
if (p_filter_by_canvas && col_obj->get_canvas_instance_id() != p_canvas_instance_id) {
continue;
}
int shape_idx = space->intersection_query_subindex_results[i];
Shape2DSW *shape = col_obj->get_shape(shape_idx);
Vector2 local_point = (col_obj->get_transform() * col_obj->get_shape_transform(shape_idx)).affine_inverse().xform(p_point);
if (!shape->contains_point(local_point)) {
continue;
}
if (cc >= p_result_max) {
continue;
}
r_results[cc].collider_id = col_obj->get_instance_id();
if (r_results[cc].collider_id != 0) {
r_results[cc].collider = ObjectDB::get_instance(r_results[cc].collider_id);
}
r_results[cc].rid = col_obj->get_self();
r_results[cc].shape = shape_idx;
r_results[cc].metadata = col_obj->get_shape_metadata(shape_idx);
cc++;
}
return cc;
}
int Physics2DDirectSpaceStateSW::intersect_point(const Vector2 &p_point, ShapeResult *r_results, int p_result_max, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas, bool p_pick_point) {
return _intersect_point_impl(p_point, r_results, p_result_max, p_exclude, p_collision_mask, p_collide_with_bodies, p_collide_with_areas, p_pick_point);
}
int Physics2DDirectSpaceStateSW::intersect_point_on_canvas(const Vector2 &p_point, ObjectID p_canvas_instance_id, ShapeResult *r_results, int p_result_max, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas, bool p_pick_point) {
return _intersect_point_impl(p_point, r_results, p_result_max, p_exclude, p_collision_mask, p_collide_with_bodies, p_collide_with_areas, p_pick_point, true, p_canvas_instance_id);
}
bool Physics2DDirectSpaceStateSW::intersect_ray(const Vector2 &p_from, const Vector2 &p_to, RayResult &r_result, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
ERR_FAIL_COND_V(space->locked, false);
Vector2 begin, end;
Vector2 normal;
begin = p_from;
end = p_to;
normal = (end - begin).normalized();
int amount = space->broadphase->cull_segment(begin, end, space->intersection_query_results, Space2DSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results);
//todo, create another array that references results, compute AABBs and check closest point to ray origin, sort, and stop evaluating results when beyond first collision
bool collided = false;
Vector2 res_point, res_normal;
int res_shape = 0;
const CollisionObject2DSW *res_obj = nullptr;
real_t min_d = 1e10;
for (int i = 0; i < amount; i++) {
if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) {
continue;
}
if (p_exclude.has(space->intersection_query_results[i]->get_self())) {
continue;
}
const CollisionObject2DSW *col_obj = space->intersection_query_results[i];
int shape_idx = space->intersection_query_subindex_results[i];
Transform2D inv_xform = col_obj->get_shape_inv_transform(shape_idx) * col_obj->get_inv_transform();
Vector2 local_from = inv_xform.xform(begin);
Vector2 local_to = inv_xform.xform(end);
/*local_from = col_obj->get_inv_transform().xform(begin);
local_from = col_obj->get_shape_inv_transform(shape_idx).xform(local_from);
local_to = col_obj->get_inv_transform().xform(end);
local_to = col_obj->get_shape_inv_transform(shape_idx).xform(local_to);*/
const Shape2DSW *shape = col_obj->get_shape(shape_idx);
Vector2 shape_point, shape_normal;
if (shape->intersect_segment(local_from, local_to, shape_point, shape_normal)) {
Transform2D xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
shape_point = xform.xform(shape_point);
real_t ld = normal.dot(shape_point);
if (ld < min_d) {
min_d = ld;
res_point = shape_point;
res_normal = inv_xform.basis_xform_inv(shape_normal).normalized();
res_shape = shape_idx;
res_obj = col_obj;
collided = true;
}
}
}
if (!collided) {
return false;
}
r_result.collider_id = res_obj->get_instance_id();
if (r_result.collider_id != 0) {
r_result.collider = ObjectDB::get_instance(r_result.collider_id);
}
r_result.normal = res_normal;
r_result.metadata = res_obj->get_shape_metadata(res_shape);
r_result.position = res_point;
r_result.rid = res_obj->get_self();
r_result.shape = res_shape;
return true;
}
int Physics2DDirectSpaceStateSW::intersect_shape(const RID &p_shape, const Transform2D &p_xform, const Vector2 &p_motion, real_t p_margin, ShapeResult *r_results, int p_result_max, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
if (p_result_max <= 0) {
return 0;
}
Shape2DSW *shape = Physics2DServerSW::singletonsw->shape_owner.get(p_shape);
ERR_FAIL_COND_V(!shape, 0);
Rect2 aabb = p_xform.xform(shape->get_aabb());
aabb = aabb.merge(Rect2(aabb.position + p_motion, aabb.size)); //motion
aabb = aabb.grow(p_margin);
int amount = space->broadphase->cull_aabb(aabb, space->intersection_query_results, Space2DSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results);
int cc = 0;
for (int i = 0; i < amount; i++) {
if (cc >= p_result_max) {
break;
}
if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) {
continue;
}
if (p_exclude.has(space->intersection_query_results[i]->get_self())) {
continue;
}
const CollisionObject2DSW *col_obj = space->intersection_query_results[i];
int shape_idx = space->intersection_query_subindex_results[i];
if (!CollisionSolver2DSW::solve(shape, p_xform, p_motion, col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), Vector2(), nullptr, nullptr, nullptr, p_margin)) {
continue;
}
r_results[cc].collider_id = col_obj->get_instance_id();
if (r_results[cc].collider_id != 0) {
r_results[cc].collider = ObjectDB::get_instance(r_results[cc].collider_id);
}
r_results[cc].rid = col_obj->get_self();
r_results[cc].shape = shape_idx;
r_results[cc].metadata = col_obj->get_shape_metadata(shape_idx);
cc++;
}
return cc;
}
bool Physics2DDirectSpaceStateSW::cast_motion(const RID &p_shape, const Transform2D &p_xform, const Vector2 &p_motion, real_t p_margin, real_t &p_closest_safe, real_t &p_closest_unsafe, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
Shape2DSW *shape = Physics2DServerSW::singletonsw->shape_owner.get(p_shape);
ERR_FAIL_COND_V(!shape, false);
Rect2 aabb = p_xform.xform(shape->get_aabb());
aabb = aabb.merge(Rect2(aabb.position + p_motion, aabb.size)); //motion
aabb = aabb.grow(p_margin);
int amount = space->broadphase->cull_aabb(aabb, space->intersection_query_results, Space2DSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results);
real_t best_safe = 1;
real_t best_unsafe = 1;
for (int i = 0; i < amount; i++) {
if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) {
continue;
}
if (p_exclude.has(space->intersection_query_results[i]->get_self())) {
continue; //ignore excluded
}
const CollisionObject2DSW *col_obj = space->intersection_query_results[i];
int shape_idx = space->intersection_query_subindex_results[i];
Transform2D col_obj_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
//test initial overlap, does it collide if going all the way?
if (!CollisionSolver2DSW::solve(shape, p_xform, p_motion, col_obj->get_shape(shape_idx), col_obj_xform, Vector2(), nullptr, nullptr, nullptr, p_margin)) {
continue;
}
//test initial overlap, ignore objects it's inside of.
if (CollisionSolver2DSW::solve(shape, p_xform, Vector2(), col_obj->get_shape(shape_idx), col_obj_xform, Vector2(), nullptr, nullptr, nullptr, p_margin)) {
continue;
}
Vector2 mnormal = p_motion.normalized();
//just do kinematic solving
real_t low = 0.0;
real_t hi = 1.0;
real_t fraction_coeff = 0.5;
for (int j = 0; j < 8; j++) { //steps should be customizable..
real_t fraction = low + (hi - low) * fraction_coeff;
Vector2 sep = mnormal; //important optimization for this to work fast enough
bool collided = CollisionSolver2DSW::solve(shape, p_xform, p_motion * fraction, col_obj->get_shape(shape_idx), col_obj_xform, Vector2(), nullptr, nullptr, &sep, p_margin);
if (collided) {
hi = fraction;
if ((j == 0) || (low > 0.0)) { // Did it not collide before?
// When alternating or first iteration, use dichotomy.
fraction_coeff = 0.5;
} else {
// When colliding again, converge faster towards low fraction
// for more accurate results with long motions that collide near the start.
fraction_coeff = 0.25;
}
} else {
low = fraction;
if ((j == 0) || (hi < 1.0)) { // Did it collide before?
// When alternating or first iteration, use dichotomy.
fraction_coeff = 0.5;
} else {
// When not colliding again, converge faster towards high fraction
// for more accurate results with long motions that collide near the end.
fraction_coeff = 0.75;
}
}
}
if (low < best_safe) {
best_safe = low;
best_unsafe = hi;
}
}
p_closest_safe = best_safe;
p_closest_unsafe = best_unsafe;
return true;
}
bool Physics2DDirectSpaceStateSW::collide_shape(RID p_shape, const Transform2D &p_shape_xform, const Vector2 &p_motion, real_t p_margin, Vector2 *r_results, int p_result_max, int &r_result_count, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
if (p_result_max <= 0) {
return false;
}
Shape2DSW *shape = Physics2DServerSW::singletonsw->shape_owner.get(p_shape);
ERR_FAIL_COND_V(!shape, 0);
Rect2 aabb = p_shape_xform.xform(shape->get_aabb());
aabb = aabb.merge(Rect2(aabb.position + p_motion, aabb.size)); //motion
aabb = aabb.grow(p_margin);
int amount = space->broadphase->cull_aabb(aabb, space->intersection_query_results, Space2DSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results);
bool collided = false;
r_result_count = 0;
Physics2DServerSW::CollCbkData cbk;
cbk.max = p_result_max;
cbk.amount = 0;
cbk.passed = 0;
cbk.ptr = r_results;
CollisionSolver2DSW::CallbackResult cbkres = Physics2DServerSW::_shape_col_cbk;
Physics2DServerSW::CollCbkData *cbkptr = &cbk;
for (int i = 0; i < amount; i++) {
if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) {
continue;
}
const CollisionObject2DSW *col_obj = space->intersection_query_results[i];
int shape_idx = space->intersection_query_subindex_results[i];
if (p_exclude.has(col_obj->get_self())) {
continue;
}
cbk.valid_dir = Vector2();
cbk.valid_depth = 0;
if (CollisionSolver2DSW::solve(shape, p_shape_xform, p_motion, col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), Vector2(), cbkres, cbkptr, nullptr, p_margin)) {
2019-04-08 11:03:37 +02:00
collided = cbk.amount > 0;
}
}
r_result_count = cbk.amount;
return collided;
}
struct _RestCallbackData2D {
const CollisionObject2DSW *object;
const CollisionObject2DSW *best_object;
int local_shape;
int best_local_shape;
int shape;
int best_shape;
Vector2 best_contact;
Vector2 best_normal;
real_t best_len;
Vector2 valid_dir;
real_t valid_depth;
real_t min_allowed_depth;
};
static void _rest_cbk_result(const Vector2 &p_point_A, const Vector2 &p_point_B, void *p_userdata) {
_RestCallbackData2D *rd = (_RestCallbackData2D *)p_userdata;
Vector2 contact_rel = p_point_B - p_point_A;
real_t len = contact_rel.length();
if (len < rd->min_allowed_depth) {
return;
}
if (len <= rd->best_len) {
return;
}
Vector2 normal = contact_rel / len;
if (rd->valid_dir != Vector2()) {
if (len > rd->valid_depth) {
return;
}
if (rd->valid_dir.dot(normal) > -CMP_EPSILON) {
return;
}
}
rd->best_len = len;
rd->best_contact = p_point_B;
rd->best_normal = normal;
rd->best_object = rd->object;
rd->best_shape = rd->shape;
rd->best_local_shape = rd->local_shape;
}
bool Physics2DDirectSpaceStateSW::rest_info(RID p_shape, const Transform2D &p_shape_xform, const Vector2 &p_motion, real_t p_margin, ShapeRestInfo *r_info, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
Shape2DSW *shape = Physics2DServerSW::singletonsw->shape_owner.get(p_shape);
ERR_FAIL_COND_V(!shape, 0);
real_t margin = MAX(p_margin, TEST_MOTION_MARGIN_MIN_VALUE);
real_t min_contact_depth = margin * TEST_MOTION_MIN_CONTACT_DEPTH_FACTOR;
Rect2 aabb = p_shape_xform.xform(shape->get_aabb());
aabb = aabb.merge(Rect2(aabb.position + p_motion, aabb.size)); //motion
aabb = aabb.grow(margin);
int amount = space->broadphase->cull_aabb(aabb, space->intersection_query_results, Space2DSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results);
_RestCallbackData2D rcd;
rcd.best_len = 0;
rcd.best_object = nullptr;
rcd.best_shape = 0;
rcd.min_allowed_depth = min_contact_depth;
for (int i = 0; i < amount; i++) {
if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) {
continue;
}
const CollisionObject2DSW *col_obj = space->intersection_query_results[i];
int shape_idx = space->intersection_query_subindex_results[i];
if (p_exclude.has(col_obj->get_self())) {
continue;
}
rcd.valid_dir = Vector2();
rcd.object = col_obj;
rcd.shape = shape_idx;
rcd.local_shape = 0;
bool sc = CollisionSolver2DSW::solve(shape, p_shape_xform, p_motion, col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), Vector2(), _rest_cbk_result, &rcd, nullptr, margin);
if (!sc) {
continue;
}
}
if (rcd.best_len == 0 || !rcd.best_object) {
return false;
}
r_info->collider_id = rcd.best_object->get_instance_id();
r_info->shape = rcd.best_shape;
r_info->normal = rcd.best_normal;
r_info->point = rcd.best_contact;
r_info->rid = rcd.best_object->get_self();
r_info->metadata = rcd.best_object->get_shape_metadata(rcd.best_shape);
if (rcd.best_object->get_type() == CollisionObject2DSW::TYPE_BODY) {
const Body2DSW *body = static_cast<const Body2DSW *>(rcd.best_object);
Vector2 rel_vec = r_info->point - body->get_transform().get_origin();
r_info->linear_velocity = Vector2(-body->get_angular_velocity() * rel_vec.y, body->get_angular_velocity() * rel_vec.x) + body->get_linear_velocity();
} else {
r_info->linear_velocity = Vector2();
}
return true;
}
Physics2DDirectSpaceStateSW::Physics2DDirectSpaceStateSW() {
space = nullptr;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////
int Space2DSW::_cull_aabb_for_body(Body2DSW *p_body, const Rect2 &p_aabb) {
int amount = broadphase->cull_aabb(p_aabb, intersection_query_results, INTERSECTION_QUERY_MAX, intersection_query_subindex_results);
for (int i = 0; i < amount; i++) {
bool keep = true;
if (intersection_query_results[i] == p_body) {
keep = false;
} else if (intersection_query_results[i]->get_type() == CollisionObject2DSW::TYPE_AREA) {
keep = false;
} else if ((static_cast<Body2DSW *>(intersection_query_results[i])->test_collision_mask(p_body)) == 0) {
keep = false;
} else if (static_cast<Body2DSW *>(intersection_query_results[i])->has_exception(p_body->get_self()) || p_body->has_exception(intersection_query_results[i]->get_self())) {
keep = false;
}
if (!keep) {
if (i < amount - 1) {
SWAP(intersection_query_results[i], intersection_query_results[amount - 1]);
SWAP(intersection_query_subindex_results[i], intersection_query_subindex_results[amount - 1]);
}
amount--;
i--;
}
}
return amount;
}
int Space2DSW::test_body_ray_separation(Body2DSW *p_body, const Transform2D &p_transform, bool p_infinite_inertia, Vector2 &r_recover_motion, Physics2DServer::SeparationResult *r_results, int p_result_max, real_t p_margin) {
Rect2 body_aabb;
bool shapes_found = false;
for (int i = 0; i < p_body->get_shape_count(); i++) {
if (p_body->is_shape_disabled(i)) {
continue;
}
if (p_body->get_shape(i)->get_type() != Physics2DServer::SHAPE_RAY) {
continue;
}
if (!shapes_found) {
body_aabb = p_body->get_shape_aabb(i);
shapes_found = true;
} else {
body_aabb = body_aabb.merge(p_body->get_shape_aabb(i));
}
}
if (!shapes_found) {
return 0;
}
// Undo the currently transform the physics server is aware of and apply the provided one
body_aabb = p_transform.xform(p_body->get_inv_transform().xform(body_aabb));
body_aabb = body_aabb.grow(p_margin);
Transform2D body_transform = p_transform;
for (int i = 0; i < p_result_max; i++) {
//reset results
r_results[i].collision_depth = -1.0;
}
int rays_found = 0;
{
// raycast AND separate
const int max_results = 32;
int recover_attempts = 4;
Vector2 sr[max_results * 2];
Physics2DServerSW::CollCbkData cbk;
cbk.max = max_results;
Physics2DServerSW::CollCbkData *cbkptr = &cbk;
CollisionSolver2DSW::CallbackResult cbkres = Physics2DServerSW::_shape_col_cbk;
do {
Vector2 recover_motion;
bool collided = false;
int amount = _cull_aabb_for_body(p_body, body_aabb);
for (int j = 0; j < p_body->get_shape_count(); j++) {
if (p_body->is_shape_disabled(j)) {
continue;
}
Shape2DSW *body_shape = p_body->get_shape(j);
if (body_shape->get_type() != Physics2DServer::SHAPE_RAY) {
continue;
}
Transform2D body_shape_xform = body_transform * p_body->get_shape_transform(j);
for (int i = 0; i < amount; i++) {
const CollisionObject2DSW *col_obj = intersection_query_results[i];
int shape_idx = intersection_query_subindex_results[i];
cbk.amount = 0;
cbk.passed = 0;
cbk.ptr = sr;
cbk.invalid_by_dir = 0;
if (CollisionObject2DSW::TYPE_BODY == col_obj->get_type()) {
const Body2DSW *b = static_cast<const Body2DSW *>(col_obj);
if (p_infinite_inertia && Physics2DServer::BODY_MODE_STATIC != b->get_mode() && Physics2DServer::BODY_MODE_KINEMATIC != b->get_mode()) {
continue;
}
}
Transform2D col_obj_shape_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
/*
* There is no point in supporting one way collisions with ray shapes, as they will always collide in the desired
* direction. Use a short ray shape if you want to achieve a similar effect.
*
if (col_obj->is_shape_set_as_one_way_collision(shape_idx)) {
cbk.valid_dir = col_obj_shape_xform.get_axis(1).normalized();
cbk.valid_depth = p_margin; //only valid depth is the collision margin
cbk.invalid_by_dir = 0;
} else {
*/
cbk.valid_dir = Vector2();
cbk.valid_depth = 0;
cbk.invalid_by_dir = 0;
/*
}
*/
Shape2DSW *against_shape = col_obj->get_shape(shape_idx);
if (CollisionSolver2DSW::solve(body_shape, body_shape_xform, Vector2(), against_shape, col_obj_shape_xform, Vector2(), cbkres, cbkptr, nullptr, p_margin)) {
if (cbk.amount > 0) {
collided = true;
}
int ray_index = -1; //reuse shape
for (int k = 0; k < rays_found; k++) {
if (r_results[ray_index].collision_local_shape == j) {
ray_index = k;
}
}
if (ray_index == -1 && rays_found < p_result_max) {
ray_index = rays_found;
rays_found++;
}
if (ray_index != -1) {
Physics2DServer::SeparationResult &result = r_results[ray_index];
for (int k = 0; k < cbk.amount; k++) {
Vector2 a = sr[k * 2 + 0];
Vector2 b = sr[k * 2 + 1];
// Compute plane on b towards a.
Vector2 n = (a - b).normalized();
float d = n.dot(b);
// Compute depth on recovered motion.
float depth = n.dot(a + recover_motion) - d;
// Apply recovery without margin.
float separation_depth = depth - p_margin;
if (separation_depth > 0.0) {
// Only recover if there is penetration.
recover_motion -= n * separation_depth;
}
if (depth > result.collision_depth) {
result.collision_depth = depth;
result.collision_point = b;
result.collision_normal = -n;
result.collision_local_shape = j;
result.collider_shape = shape_idx;
result.collider = col_obj->get_self();
result.collider_id = col_obj->get_instance_id();
result.collider_metadata = col_obj->get_shape_metadata(shape_idx);
if (col_obj->get_type() == CollisionObject2DSW::TYPE_BODY) {
Body2DSW *body = (Body2DSW *)col_obj;
Vector2 rel_vec = b - body->get_transform().get_origin();
result.collider_velocity = Vector2(-body->get_angular_velocity() * rel_vec.y, body->get_angular_velocity() * rel_vec.x) + body->get_linear_velocity();
}
}
}
}
}
}
}
if (!collided || recover_motion == Vector2()) {
break;
}
body_transform.elements[2] += recover_motion;
body_aabb.position += recover_motion;
recover_attempts--;
} while (recover_attempts);
}
r_recover_motion = body_transform.elements[2] - p_transform.elements[2];
return rays_found;
}
bool Space2DSW::test_body_motion(Body2DSW *p_body, const Transform2D &p_from, const Vector2 &p_motion, bool p_infinite_inertia, real_t p_margin, Physics2DServer::MotionResult *r_result, bool p_exclude_raycast_shapes, const Set<RID> &p_exclude) {
//give me back regular physics engine logic
//this is madness
//and most people using this function will think
//what it does is simpler than using physics
//this took about a week to get right..
//but is it right? who knows at this point..
2016-09-01 17:03:55 +02:00
if (r_result) {
r_result->collider_id = 0;
r_result->collider_shape = 0;
2016-09-01 17:03:55 +02:00
}
Rect2 body_aabb;
bool shapes_found = false;
for (int i = 0; i < p_body->get_shape_count(); i++) {
if (p_body->is_shape_disabled(i)) {
continue;
}
if (p_exclude_raycast_shapes && p_body->get_shape(i)->get_type() == Physics2DServer::SHAPE_RAY) {
continue;
}
if (!shapes_found) {
body_aabb = p_body->get_shape_aabb(i);
shapes_found = true;
} else {
body_aabb = body_aabb.merge(p_body->get_shape_aabb(i));
}
}
if (!shapes_found) {
if (r_result) {
*r_result = Physics2DServer::MotionResult();
r_result->motion = p_motion;
}
return false;
}
real_t margin = MAX(p_margin, TEST_MOTION_MARGIN_MIN_VALUE);
// Undo the currently transform the physics server is aware of and apply the provided one
body_aabb = p_from.xform(p_body->get_inv_transform().xform(body_aabb));
body_aabb = body_aabb.grow(margin);
static const int max_excluded_shape_pairs = 32;
ExcludedShapeSW excluded_shape_pairs[max_excluded_shape_pairs];
int excluded_shape_pair_count = 0;
real_t min_contact_depth = margin * TEST_MOTION_MIN_CONTACT_DEPTH_FACTOR;
float motion_length = p_motion.length();
Vector2 motion_normal = p_motion / motion_length;
Transform2D body_transform = p_from;
bool recovered = false;
{
//STEP 1, FREE BODY IF STUCK
const int max_results = 32;
int recover_attempts = 4;
Vector2 sr[max_results * 2];
do {
Physics2DServerSW::CollCbkData cbk;
cbk.max = max_results;
cbk.amount = 0;
cbk.passed = 0;
cbk.ptr = sr;
cbk.invalid_by_dir = 0;
excluded_shape_pair_count = 0; //last step is the one valid
2017-08-21 21:15:36 +02:00
Physics2DServerSW::CollCbkData *cbkptr = &cbk;
CollisionSolver2DSW::CallbackResult cbkres = Physics2DServerSW::_shape_col_cbk;
bool collided = false;
int amount = _cull_aabb_for_body(p_body, body_aabb);
for (int j = 0; j < p_body->get_shape_count(); j++) {
if (p_body->is_shape_disabled(j)) {
continue;
}
Shape2DSW *body_shape = p_body->get_shape(j);
if (p_exclude_raycast_shapes && body_shape->get_type() == Physics2DServer::SHAPE_RAY) {
continue;
}
Transform2D body_shape_xform = body_transform * p_body->get_shape_transform(j);
for (int i = 0; i < amount; i++) {
const CollisionObject2DSW *col_obj = intersection_query_results[i];
if (p_exclude.has(col_obj->get_self())) {
continue;
}
int shape_idx = intersection_query_subindex_results[i];
if (CollisionObject2DSW::TYPE_BODY == col_obj->get_type()) {
const Body2DSW *b = static_cast<const Body2DSW *>(col_obj);
if (p_infinite_inertia && Physics2DServer::BODY_MODE_STATIC != b->get_mode() && Physics2DServer::BODY_MODE_KINEMATIC != b->get_mode()) {
continue;
}
}
Transform2D col_obj_shape_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
if (col_obj->is_shape_set_as_one_way_collision(shape_idx)) {
cbk.valid_dir = col_obj_shape_xform.get_axis(1).normalized();
float owc_margin = col_obj->get_shape_one_way_collision_margin(shape_idx);
cbk.valid_depth = MAX(owc_margin, margin); //user specified, but never less than actual margin or it won't work
cbk.invalid_by_dir = 0;
if (col_obj->get_type() == CollisionObject2DSW::TYPE_BODY) {
const Body2DSW *b = static_cast<const Body2DSW *>(col_obj);
2018-11-03 17:30:08 +01:00
if (b->get_mode() == Physics2DServer::BODY_MODE_KINEMATIC || b->get_mode() == Physics2DServer::BODY_MODE_RIGID) {
2018-11-03 17:23:25 +01:00
//fix for moving platforms (kinematic and dynamic), margin is increased by how much it moved in the given direction
Vector2 lv = b->get_linear_velocity();
//compute displacement from linear velocity
Vector2 motion = lv * step;
float motion_len = motion.length();
motion.normalize();
cbk.valid_depth += motion_len * MAX(motion.dot(-cbk.valid_dir), 0.0);
}
}
} else {
cbk.valid_dir = Vector2();
cbk.valid_depth = 0;
cbk.invalid_by_dir = 0;
}
int current_passed = cbk.passed; //save how many points passed collision
bool did_collide = false;
Shape2DSW *against_shape = col_obj->get_shape(shape_idx);
if (CollisionSolver2DSW::solve(body_shape, body_shape_xform, Vector2(), against_shape, col_obj_shape_xform, Vector2(), cbkres, cbkptr, nullptr, margin)) {
did_collide = cbk.passed > current_passed; //more passed, so collision actually existed
}
if (!did_collide && cbk.invalid_by_dir > 0) {
//this shape must be excluded
if (excluded_shape_pair_count < max_excluded_shape_pairs) {
ExcludedShapeSW esp;
esp.local_shape = body_shape;
esp.against_object = col_obj;
2017-09-17 15:18:09 +02:00
esp.against_shape_index = shape_idx;
excluded_shape_pairs[excluded_shape_pair_count++] = esp;
}
}
if (did_collide) {
collided = true;
}
}
}
if (!collided) {
break;
}
recovered = true;
Vector2 recover_motion;
for (int i = 0; i < cbk.amount; i++) {
Vector2 a = sr[i * 2 + 0];
Vector2 b = sr[i * 2 + 1];
// Compute plane on b towards a.
Vector2 n = (a - b).normalized();
float d = n.dot(b);
// Compute depth on recovered motion.
float depth = n.dot(a + recover_motion) - d;
if (depth > min_contact_depth + CMP_EPSILON) {
// Only recover if there is penetration.
recover_motion -= n * (depth - min_contact_depth) * 0.4;
}
}
if (recover_motion == Vector2()) {
collided = false;
break;
}
body_transform.elements[2] += recover_motion;
body_aabb.position += recover_motion;
recover_attempts--;
} while (recover_attempts);
}
real_t safe = 1.0;
real_t unsafe = 1.0;
int best_shape = -1;
{
// STEP 2 ATTEMPT MOTION
Rect2 motion_aabb = body_aabb;
motion_aabb.position += p_motion;
motion_aabb = motion_aabb.merge(body_aabb);
int amount = _cull_aabb_for_body(p_body, motion_aabb);
for (int body_shape_idx = 0; body_shape_idx < p_body->get_shape_count(); body_shape_idx++) {
if (p_body->is_shape_disabled(body_shape_idx)) {
continue;
}
Shape2DSW *body_shape = p_body->get_shape(body_shape_idx);
if (p_exclude_raycast_shapes && body_shape->get_type() == Physics2DServer::SHAPE_RAY) {
continue;
}
Transform2D body_shape_xform = body_transform * p_body->get_shape_transform(body_shape_idx);
bool stuck = false;
real_t best_safe = 1;
real_t best_unsafe = 1;
for (int i = 0; i < amount; i++) {
const CollisionObject2DSW *col_obj = intersection_query_results[i];
if (p_exclude.has(col_obj->get_self())) {
continue;
}
int col_shape_idx = intersection_query_subindex_results[i];
Shape2DSW *against_shape = col_obj->get_shape(col_shape_idx);
if (CollisionObject2DSW::TYPE_BODY == col_obj->get_type()) {
const Body2DSW *b = static_cast<const Body2DSW *>(col_obj);
if (p_infinite_inertia && Physics2DServer::BODY_MODE_STATIC != b->get_mode() && Physics2DServer::BODY_MODE_KINEMATIC != b->get_mode()) {
continue;
}
}
bool excluded = false;
for (int k = 0; k < excluded_shape_pair_count; k++) {
if (excluded_shape_pairs[k].local_shape == body_shape && excluded_shape_pairs[k].against_object == col_obj && excluded_shape_pairs[k].against_shape_index == col_shape_idx) {
excluded = true;
break;
}
}
if (excluded) {
continue;
}
Transform2D col_obj_shape_xform = col_obj->get_transform() * col_obj->get_shape_transform(col_shape_idx);
//test initial overlap, does it collide if going all the way?
if (!CollisionSolver2DSW::solve(body_shape, body_shape_xform, p_motion, against_shape, col_obj_shape_xform, Vector2(), nullptr, nullptr, nullptr, 0)) {
continue;
}
//test initial overlap
if (CollisionSolver2DSW::solve(body_shape, body_shape_xform, Vector2(), against_shape, col_obj_shape_xform, Vector2(), nullptr, nullptr, nullptr, 0)) {
if (col_obj->is_shape_set_as_one_way_collision(col_shape_idx)) {
Vector2 direction = col_obj_shape_xform.get_axis(1).normalized();
if (motion_normal.dot(direction) < 0) {
continue;
}
}
stuck = true;
break;
}
//just do kinematic solving
real_t low = 0.0;
real_t hi = 1.0;
real_t fraction_coeff = 0.5;
for (int k = 0; k < 8; k++) { //steps should be customizable..
real_t fraction = low + (hi - low) * fraction_coeff;
Vector2 sep = motion_normal; //important optimization for this to work fast enough
bool collided = CollisionSolver2DSW::solve(body_shape, body_shape_xform, p_motion * fraction, against_shape, col_obj_shape_xform, Vector2(), nullptr, nullptr, &sep, 0);
if (collided) {
hi = fraction;
if ((k == 0) || (low > 0.0)) { // Did it not collide before?
// When alternating or first iteration, use dichotomy.
fraction_coeff = 0.5;
} else {
// When colliding again, converge faster towards low fraction
// for more accurate results with long motions that collide near the start.
fraction_coeff = 0.25;
}
} else {
low = fraction;
if ((k == 0) || (hi < 1.0)) { // Did it collide before?
// When alternating or first iteration, use dichotomy.
fraction_coeff = 0.5;
} else {
// When not colliding again, converge faster towards high fraction
// for more accurate results with long motions that collide near the end.
fraction_coeff = 0.75;
}
}
}
if (col_obj->is_shape_set_as_one_way_collision(col_shape_idx)) {
Vector2 cd[2];
Physics2DServerSW::CollCbkData cbk;
cbk.max = 1;
cbk.amount = 0;
cbk.passed = 0;
cbk.ptr = cd;
cbk.valid_dir = col_obj_shape_xform.get_axis(1).normalized();
cbk.valid_depth = 10e20;
Vector2 sep = motion_normal; //important optimization for this to work fast enough
bool collided = CollisionSolver2DSW::solve(body_shape, body_shape_xform, p_motion * (hi + contact_max_allowed_penetration), col_obj->get_shape(col_shape_idx), col_obj_shape_xform, Vector2(), Physics2DServerSW::_shape_col_cbk, &cbk, &sep, 0);
if (!collided || cbk.amount == 0) {
continue;
}
}
if (low < best_safe) {
best_safe = low;
best_unsafe = hi;
}
}
if (stuck) {
safe = 0;
unsafe = 0;
best_shape = body_shape_idx; //sadly it's the best
break;
}
if (best_safe == 1.0) {
continue;
}
if (best_safe < safe) {
safe = best_safe;
unsafe = best_unsafe;
best_shape = body_shape_idx;
}
}
}
bool collided = false;
if (recovered || (safe < 1)) {
if (safe >= 1) {
best_shape = -1; //no best shape with cast, reset to -1
}
//it collided, let's get the rest info in unsafe advance
Transform2D ugt = body_transform;
ugt.elements[2] += p_motion * unsafe;
_RestCallbackData2D rcd;
rcd.best_len = 0;
rcd.best_object = nullptr;
rcd.best_shape = 0;
// Allowed depth can't be lower than motion length, in order to handle contacts at low speed.
rcd.min_allowed_depth = MIN(motion_length, min_contact_depth);
body_aabb.position += p_motion * unsafe;
int amount = _cull_aabb_for_body(p_body, body_aabb);
int from_shape = best_shape != -1 ? best_shape : 0;
int to_shape = best_shape != -1 ? best_shape + 1 : p_body->get_shape_count();
for (int j = from_shape; j < to_shape; j++) {
if (p_body->is_shape_disabled(j)) {
continue;
}
Transform2D body_shape_xform = ugt * p_body->get_shape_transform(j);
Shape2DSW *body_shape = p_body->get_shape(j);
if (p_exclude_raycast_shapes && body_shape->get_type() == Physics2DServer::SHAPE_RAY) {
continue;
}
for (int i = 0; i < amount; i++) {
const CollisionObject2DSW *col_obj = intersection_query_results[i];
if (p_exclude.has(col_obj->get_self())) {
continue;
}
int shape_idx = intersection_query_subindex_results[i];
if (CollisionObject2DSW::TYPE_BODY == col_obj->get_type()) {
const Body2DSW *b = static_cast<const Body2DSW *>(col_obj);
if (p_infinite_inertia && Physics2DServer::BODY_MODE_STATIC != b->get_mode() && Physics2DServer::BODY_MODE_KINEMATIC != b->get_mode()) {
continue;
}
}
Shape2DSW *against_shape = col_obj->get_shape(shape_idx);
bool excluded = false;
for (int k = 0; k < excluded_shape_pair_count; k++) {
if (excluded_shape_pairs[k].local_shape == body_shape && excluded_shape_pairs[k].against_object == col_obj && excluded_shape_pairs[k].against_shape_index == shape_idx) {
excluded = true;
break;
}
}
if (excluded) {
continue;
}
Transform2D col_obj_shape_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
if (col_obj->is_shape_set_as_one_way_collision(shape_idx)) {
rcd.valid_dir = col_obj_shape_xform.get_axis(1).normalized();
float owc_margin = col_obj->get_shape_one_way_collision_margin(shape_idx);
rcd.valid_depth = MAX(owc_margin, margin); //user specified, but never less than actual margin or it won't work
if (col_obj->get_type() == CollisionObject2DSW::TYPE_BODY) {
const Body2DSW *b = static_cast<const Body2DSW *>(col_obj);
if (b->get_mode() == Physics2DServer::BODY_MODE_KINEMATIC || b->get_mode() == Physics2DServer::BODY_MODE_RIGID) {
//fix for moving platforms (kinematic and dynamic), margin is increased by how much it moved in the given direction
Vector2 lv = b->get_linear_velocity();
//compute displacement from linear velocity
Vector2 motion = lv * step;
float motion_len = motion.length();
motion.normalize();
rcd.valid_depth += motion_len * MAX(motion.dot(-rcd.valid_dir), 0.0);
}
}
} else {
rcd.valid_dir = Vector2();
rcd.valid_depth = 0;
}
rcd.object = col_obj;
rcd.shape = shape_idx;
rcd.local_shape = j;
bool sc = CollisionSolver2DSW::solve(body_shape, body_shape_xform, Vector2(), against_shape, col_obj_shape_xform, Vector2(), _rest_cbk_result, &rcd, nullptr, margin);
if (!sc) {
continue;
}
}
}
if (rcd.best_len != 0) {
if (r_result) {
r_result->collider = rcd.best_object->get_self();
r_result->collider_id = rcd.best_object->get_instance_id();
r_result->collider_shape = rcd.best_shape;
r_result->collision_local_shape = rcd.best_local_shape;
r_result->collision_normal = rcd.best_normal;
r_result->collision_point = rcd.best_contact;
r_result->collision_depth = rcd.best_len;
r_result->collision_safe_fraction = safe;
r_result->collision_unsafe_fraction = unsafe;
r_result->collider_metadata = rcd.best_object->get_shape_metadata(rcd.best_shape);
const Body2DSW *body = static_cast<const Body2DSW *>(rcd.best_object);
Vector2 rel_vec = r_result->collision_point - body->get_transform().get_origin();
r_result->collider_velocity = Vector2(-body->get_angular_velocity() * rel_vec.y, body->get_angular_velocity() * rel_vec.x) + body->get_linear_velocity();
r_result->motion = safe * p_motion;
r_result->remainder = p_motion - safe * p_motion;
r_result->motion += (body_transform.get_origin() - p_from.get_origin());
}
collided = true;
}
}
if (!collided && r_result) {
r_result->motion = p_motion;
r_result->remainder = Vector2();
r_result->motion += (body_transform.get_origin() - p_from.get_origin());
}
return collided;
}
// Assumes a valid collision pair, this should have been checked beforehand in the BVH or octree.
void *Space2DSW::_broadphase_pair(CollisionObject2DSW *p_object_A, int p_subindex_A, CollisionObject2DSW *p_object_B, int p_subindex_B, void *p_pair_data, void *p_self) {
// An existing pair - nothing to do, pair is still valid.
if (p_pair_data) {
return p_pair_data;
}
// New pair
CollisionObject2DSW::Type type_A = p_object_A->get_type();
CollisionObject2DSW::Type type_B = p_object_B->get_type();
if (type_A > type_B) {
SWAP(p_object_A, p_object_B);
SWAP(p_subindex_A, p_subindex_B);
SWAP(type_A, type_B);
}
Space2DSW *self = (Space2DSW *)p_self;
self->collision_pairs++;
if (type_A == CollisionObject2DSW::TYPE_AREA) {
Area2DSW *area_a = static_cast<Area2DSW *>(p_object_A);
if (type_B == CollisionObject2DSW::TYPE_AREA) {
Area2DSW *area_b = static_cast<Area2DSW *>(p_object_B);
Area2Pair2DSW *area2_pair = memnew(Area2Pair2DSW(area_b, p_subindex_B, area_a, p_subindex_A));
return area2_pair;
} else {
Body2DSW *body_b = static_cast<Body2DSW *>(p_object_B);
AreaPair2DSW *area_pair = memnew(AreaPair2DSW(body_b, p_subindex_B, area_a, p_subindex_A));
return area_pair;
}
} else {
Body2DSW *body_a = static_cast<Body2DSW *>(p_object_A);
Body2DSW *body_b = static_cast<Body2DSW *>(p_object_B);
BodyPair2DSW *body_pair = memnew(BodyPair2DSW(body_a, p_subindex_A, body_b, p_subindex_B));
return body_pair;
}
return nullptr;
}
void Space2DSW::_broadphase_unpair(CollisionObject2DSW *p_object_A, int p_subindex_A, CollisionObject2DSW *p_object_B, int p_subindex_B, void *p_pair_data, void *p_self) {
if (!p_pair_data) {
return;
}
Space2DSW *self = (Space2DSW *)p_self;
self->collision_pairs--;
Constraint2DSW *c = (Constraint2DSW *)p_pair_data;
memdelete(c);
}
const SelfList<Body2DSW>::List &Space2DSW::get_active_body_list() const {
return active_list;
}
void Space2DSW::body_add_to_active_list(SelfList<Body2DSW> *p_body) {
active_list.add(p_body);
}
void Space2DSW::body_remove_from_active_list(SelfList<Body2DSW> *p_body) {
active_list.remove(p_body);
}
void Space2DSW::body_add_to_inertia_update_list(SelfList<Body2DSW> *p_body) {
inertia_update_list.add(p_body);
}
void Space2DSW::body_remove_from_inertia_update_list(SelfList<Body2DSW> *p_body) {
inertia_update_list.remove(p_body);
}
BroadPhase2DSW *Space2DSW::get_broadphase() {
return broadphase;
}
void Space2DSW::add_object(CollisionObject2DSW *p_object) {
ERR_FAIL_COND(objects.has(p_object));
objects.insert(p_object);
}
void Space2DSW::remove_object(CollisionObject2DSW *p_object) {
ERR_FAIL_COND(!objects.has(p_object));
objects.erase(p_object);
}
const Set<CollisionObject2DSW *> &Space2DSW::get_objects() const {
return objects;
}
void Space2DSW::body_add_to_state_query_list(SelfList<Body2DSW> *p_body) {
state_query_list.add(p_body);
}
void Space2DSW::body_remove_from_state_query_list(SelfList<Body2DSW> *p_body) {
state_query_list.remove(p_body);
}
void Space2DSW::area_add_to_monitor_query_list(SelfList<Area2DSW> *p_area) {
monitor_query_list.add(p_area);
}
void Space2DSW::area_remove_from_monitor_query_list(SelfList<Area2DSW> *p_area) {
monitor_query_list.remove(p_area);
}
void Space2DSW::area_add_to_moved_list(SelfList<Area2DSW> *p_area) {
area_moved_list.add(p_area);
}
void Space2DSW::area_remove_from_moved_list(SelfList<Area2DSW> *p_area) {
area_moved_list.remove(p_area);
}
const SelfList<Area2DSW>::List &Space2DSW::get_moved_area_list() const {
return area_moved_list;
}
void Space2DSW::call_queries() {
while (state_query_list.first()) {
Body2DSW *b = state_query_list.first()->self();
state_query_list.remove(state_query_list.first());
b->call_queries();
}
while (monitor_query_list.first()) {
Area2DSW *a = monitor_query_list.first()->self();
monitor_query_list.remove(monitor_query_list.first());
a->call_queries();
}
}
void Space2DSW::setup() {
contact_debug_count = 0;
while (inertia_update_list.first()) {
inertia_update_list.first()->self()->update_inertias();
inertia_update_list.remove(inertia_update_list.first());
}
}
void Space2DSW::update() {
broadphase->update();
}
void Space2DSW::set_param(Physics2DServer::SpaceParameter p_param, real_t p_value) {
switch (p_param) {
case Physics2DServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS:
contact_recycle_radius = p_value;
break;
case Physics2DServer::SPACE_PARAM_CONTACT_MAX_SEPARATION:
contact_max_separation = p_value;
break;
case Physics2DServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION:
contact_max_allowed_penetration = p_value;
break;
case Physics2DServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_THRESHOLD:
body_linear_velocity_sleep_threshold = p_value;
break;
case Physics2DServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_THRESHOLD:
body_angular_velocity_sleep_threshold = p_value;
break;
case Physics2DServer::SPACE_PARAM_BODY_TIME_TO_SLEEP:
body_time_to_sleep = p_value;
break;
case Physics2DServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS:
constraint_bias = p_value;
break;
}
}
real_t Space2DSW::get_param(Physics2DServer::SpaceParameter p_param) const {
switch (p_param) {
case Physics2DServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS:
return contact_recycle_radius;
case Physics2DServer::SPACE_PARAM_CONTACT_MAX_SEPARATION:
return contact_max_separation;
case Physics2DServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION:
return contact_max_allowed_penetration;
case Physics2DServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_THRESHOLD:
return body_linear_velocity_sleep_threshold;
case Physics2DServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_THRESHOLD:
return body_angular_velocity_sleep_threshold;
case Physics2DServer::SPACE_PARAM_BODY_TIME_TO_SLEEP:
return body_time_to_sleep;
case Physics2DServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS:
return constraint_bias;
}
return 0;
}
void Space2DSW::lock() {
locked = true;
}
void Space2DSW::unlock() {
locked = false;
}
bool Space2DSW::is_locked() const {
return locked;
}
Physics2DDirectSpaceStateSW *Space2DSW::get_direct_state() {
return direct_access;
}
Space2DSW::Space2DSW() {
collision_pairs = 0;
active_objects = 0;
island_count = 0;
contact_debug_count = 0;
locked = false;
contact_recycle_radius = 1.0;
contact_max_separation = 1.5;
contact_max_allowed_penetration = 0.3;
constraint_bias = 0.2;
body_linear_velocity_sleep_threshold = GLOBAL_DEF("physics/2d/sleep_threshold_linear", 2.0);
2017-07-08 17:12:18 +02:00
body_angular_velocity_sleep_threshold = GLOBAL_DEF("physics/2d/sleep_threshold_angular", (8.0 / 180.0 * Math_PI));
body_time_to_sleep = GLOBAL_DEF("physics/2d/time_before_sleep", 0.5);
2018-10-05 18:43:53 +02:00
ProjectSettings::get_singleton()->set_custom_property_info("physics/2d/time_before_sleep", PropertyInfo(Variant::REAL, "physics/2d/time_before_sleep", PROPERTY_HINT_RANGE, "0,5,0.01,or_greater"));
broadphase = BroadPhase2DSW::create_func();
broadphase->set_pair_callback(_broadphase_pair, this);
broadphase->set_unpair_callback(_broadphase_unpair, this);
area = nullptr;
direct_access = memnew(Physics2DDirectSpaceStateSW);
direct_access->space = this;
for (int i = 0; i < ELAPSED_TIME_MAX; i++) {
elapsed_time[i] = 0;
}
}
Space2DSW::~Space2DSW() {
memdelete(broadphase);
memdelete(direct_access);
}