- Replaced `MD5Buffer`, `MD5Text`, `SHA256Buffer` and `SHA256Text` implementation to use the `System.Security.Cryptography` classes and avoid marshaling.
- Added `SHA1Buffer` and `SHA1Text`.
- Renamed `ToUTF8` to `ToUTF8Buffer`.
- Renamed `ToAscii` to `ToASCIIBuffer`.
- Added `ToUTF16Buffer` and `ToUTF32Buffer`.
- Added `GetStringFromUTF16` and `GetStringFromUTF32`.
- Renamed `IsValidInteger` to `IsValidInt`.
- Added `IsValidFileName`.
- Added `IsValidHexNumber`.
- Added support for IPv6 to `IsValidIPAddress`.
- Added `ValidateNodeName`.
- Updated the documentation of the `IsValid*` methods.
- Moved `GetBaseName` to keep methods alphabetically sorted.
- Removed `Length`, users should just use the Length property.
- Removed `Insert`, string already has a method with the same signature that takes precedence.
- Removed `Erase`.
- Removed `ToLower` and `ToUpper`, string already has methods with the same signature that take precedence.
- Removed `FindLast` in favor of `RFind`.
- Replaced `RFind` and `RFindN` implemenation with a ca ll to `string.LastIndexOf` to avoid marshaling.
- Added `LPad` and `RPad`.
- Added `StripEscapes`.
- Replaced `LStrip` and `RStrip` implementation with a call to `string.TrimStart` and `string.TrimEnd`.
- Added `TrimPrefix` and `TrimSuffix`.
- Renamed `OrdAt` to `UnicodeAt`.
- Added `CountN` and move the `caseSensitive` parameter of `Count` to the end.
- Added `Indent` and `Dedent`.
These callbacks are used for marshaling by callables and generic Godot
collections.
C# generics don't support specialization the way C++ templates do.
I knew NativeAOT could optimize away many type checks when the types
are known at compile time, but I didn't trust the JIT would do as good
a job, so I initially went with cached function pointers.
Well, it turns out the JIT is also very good at optimizing in this
scenario, so I'm changing the methods to do the conversion directly,
rather than returning a function pointer for the conversion.
The methods were moved to `VariantUtils`, and were renamed from
`GetFromVariantCallback/GetToVariantCallback` to `ConvertTo/CreateFrom`.
The new implementation looks like it goes through many `if` checks
at runtime to find the right branch for the type, but in practice it
works pretty much like template specialization. The JIT only generates
code for the relevant branch. Together with inlining, the result is
very close or the same as doing the conversion manually:
```cs
godot_variant variant;
int foo = variant.Int;
int bar = VariantUtils.ConvertTo<int>(variant);
```
If the type is a generic Godot collection, the conversion still goes
through a function pointer call.
The new code happens to be much shorter as well, with the file going
from 1057 lines to 407.
Side note: `Variant.cs` was mistakenly created in the wrong folder,
so I moved it to the `Core` folder.
This allows using generic Godot collections as type arguments for other
generic Godot collections. This also allows generic Godot collections
as parameter or return type in dynamic Callable invocations.
We aim to make the C# API reflection-free, mainly for concerns about
performance, and to be able to target NativeAOT in refletion-free mode,
which reduces the binary size.
One of the main usages of reflection still left was the dynamic
invokation of callable delegates, and for some time I wasn't sure
I would find an alternative solution that I'd be happy with.
The new solution uses trampoline functions to invoke the delegates:
```
static void Trampoline(object delegateObj, NativeVariantPtrArgs args, out godot_variant ret)
{
if (args.Count != 1)
throw new ArgumentException($"Callable expected 1 arguments but received {args.Count}.");
string res = ((Func<int, string>)delegateObj)(
VariantConversionCallbacks.GetToManagedCallback<int>()(args[0])
);
ret = VariantConversionCallbacks.GetToVariantCallback<string>()(res);
}
Callable.CreateWithUnsafeTrampoline((int num) => "Foo" + num, &Trampoline);
```
Of course, this is too much boilerplate for user code. To improve this,
the `Callable.From` methods were added. These are overloads that take
`Action` and `Func` delegates, which covers the most common use cases:
lambdas and method groups:
```
// Lambda
Callable.From((int num) => "Foo" + num);
// Method group
string AppendNum(int num) => "Foo" + num;
Callable.From(AppendNum);
```
Unfortunately, due to limitations in the C# language, implicit
conversions from delegates to `Callable` are not supported.
`Callable.From` does not support custom delegates. These should be
uncommon, but the Godot C# API actually uses them for event signals.
As such, the bindings generator was updated to generate trampoline
functions for event signals. It was also optimized to use `Action`
instead of a custom delegate for parameterless signals, which removes
the need for the trampoline functions for those signals.
The change to reflection-free invokation removes one of the last needs
for `ConvertVariantToManagedObjectOfType`. The only remaining usage is
from calling script constructors with parameters from the engine
(`CreateManagedForGodotObjectScriptInstance`). Once that one is made
reflection-free, `ConvertVariantToManagedObjectOfType` can be removed.
We use collectible AssemblyLoadContexts as that's the only way to allow
reloading assemblies after building. However, collectible assemblies
have some restrictions:
- https://learn.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/collectible-assemblies#restrictions-on-collectible-assemblies
Those restrictions can cause issues with third-party code, such as some
mocking libraries.
In order to work around this problem, we're going to load assemblies
as collectible only in Godot editor, and not when running games.
These issues will still exist in the editor, but this will be enough
for some users.
If the delegate target is an Object, the connected signal will be registered in that object instead of the middleman. So when that object is destroyed, the signal will be properly disconnected.
Scripts that are instantiated at some point will always be recreated
if they ever become placeholders to prevent non-tool scripts
instantiated manually by users to become placeholders, if they
do become placeholders due to errors that prevent instantiation
(such as a missing parameterless constructor) these scripts
will also be recreated replacing the temporary placeholder.
If a script is marked as a tool but becomes a non-tool script
in a rebuild, the script will become a placeholder and will
no longer be considered applicable to be replaced by an instance
since the user explicitly removed the Tool attribute.
Vector4 and Vector4i were implemented incorrectly in godot_variant.
They were also missing their respective Variant conversion callbacks
(used for generic collections).
Took the chance to remove unnecessary native calls for creating
Variant from Vector4, as now it can be done from C# (which is faster).
- Use different syntax for object printing to avoid confusion with arrays.
- Print null as `<null>` to avoid confusion with a string `"null"`.
- Display `<empty>` in editor resource pickers to avoid confusion
with array-based properties.
- Replace `IndexOutOfRangeException` with `ArgumentOutOfRangeException`
- Replace `Exception` with a more specific exception
- Add the parameter name to argument exception
- Update documentation for methods that throw exceptions
- Use `StringBuilder` to build exception messages
- Ensure exception messages end with a period
- Remove event as a valid target of `SignalAttribute`
- Stop adding the `[Signal]` attribute to events in bindings_generator
- Make bindings_generator use the `EventHandler` suffix to be consistent with the C# source generator
- Remove obsolete comment about the signal's delegate name
- MustBeVariant attribute can be used to enforce that generic types must
be a marshable from/to Variant.
- Also renames all diagnostic ids to be valid unicode identifiers.
Node methods in C# extended to use generics
now have the optional parameter `includeInternal`
like their non-generic equivalents.
Also, fixed a typo in the `Node.get_child` documentation.
- In cases where both `Xform`/`XformInv` and the `*` operator were
implemented the `Xform`/`XformInv` methods were removed in favor of the
`*` operator.
- In cases where the `Xform`/`XformInv` existed but not the `*` operator,
the `Xform`/`XformInv` methods were replaced with the `*` operator.
- In cases where no method existed, a new `*` operator has been
implemented to support the same operations that are supported in GDScript.
- Fixes the `Transform.Xform` and `Transform.XformInv` with `Rect2`
implementation to use a zero `Rect2` size to start expanding from
(which is how it's implemented in C++).
- Moves interop functions to UnmanagedCallbacks struct that
contains the function pointers and is passed to C#.
- Implements UnmanagedCallbacksGenerator, a C# source generator that
generates the UnmanagedCallbacks struct in C# and the body for the
NativeFuncs methods (their implementation just calls the function
pointer in the UnmanagedCallbacks). The generated methods are needed
because .NET pins byref parameters of native calls, even if they are
'ref struct's, which don't need pinning. The generated methods use
`Unsafe.AsPointer` so that we can benefit from byref parameters
without suffering overhead of pinning.
Co-authored-by: Raul Santos <raulsntos@gmail.com>
We were using it to workaround a limitation of `Unsafe.AsPointer` and
`ref struct`s. However, we can get the same result with some tricks,
since we have control over the declaration of these structs.
This new version does not support the following type arguments:
- Generic types
- Array of Godot Object (Godot.Object[]) or derived types
The new implementation uses delegate pointers to call the Variant
conversion methods. We do type checking only once in the static
constructor to get the conversion delegates.
Now, we no longer need to do type checking every time, and we no
longer have to box value types.
This is the best implementation I could come up with, as C# generics
don't support anything similar to C++ template specializations.
- Array and Dictionary now store `Variant` instead of `System.Object`.
- Removed generic Array and Dictionary.
They cause too much issues, heavily relying on reflection and
very limited by the lack of a generic specialization.
- Removed support for non-Godot collections.
Support for them also relied heavily on reflection for marshaling.
Support for them will likely be re-introduced in the future, but
it will have to rely on source generators instead of reflection.
- Reduced our use of reflection.
The remaining usages will be moved to source generators soon.
The only usage that I'm not sure yet how to replace is dynamic
invocation of delegates.
Changed the signal declaration signal to:
```
// The following generates a MySignal event
[Signal] public delegate void MySignalEventHandler(int param);
```
In the past, the Godot editor distributed the API assemblies and
copied them to project directories for projects to reference them.
This changed with the move to .NET 5/6. Godot no longer copies the
assemblies to project directories. However, the project Sdk still
tried to reference them from the same location.
From now on, the GodotSharp API is distributed as a NuGet package,
which the Sdk can reference.
Added an option to `build_assemblies.py` to copy all Godot NuGet
packages to an existing local NuGet source. This will be needed
during development, while packages are not published to a remote
NuGet repository.
This option also makes sure to remove packages of the same version
installed (~/.nuget/packages). Very useful during development, when
packages change, to make sure the package being used by a project is
the same we just built and not one from a previous build.
A local NuGet source can be created like this:
```
mkdir ~/MyLocalNuGetSource && \
dotnet nuget add source ~/MyLocalNuGetSource/ -n MyLocalNuGetSource
```
Previously, we added source generators for invoking/accessing methods,
properties and fields in scripts. This freed us from the overhead of
reflection. However, the generated code still used our dynamic
marshaling functions, which do runtime type checking and box value
types.
This commit changes the bindings and source generators to include
'static' marshaling. Based on the types known at compile time, now
we generate the appropriate marshaling call for each type.
Previously, for each scripts class instance that was created from code
rather than by the engine, we were constructing, configuring and
assigning a new CSharpScript.
This has changed now and we make sure there's only one CSharpScript
associated to each type.
The editor no longer needs to create temporary instances to get the
default values. The initializer values of the exported properties are
still evaluated at runtime. For example, in the following example,
`GetInitialValue()` will be called when first looks for default values:
```
[Export] int MyValue = GetInitialValue();
```
Exporting fields with a non-supported type now results in a compiler
error rather than a runtime error when the script is used.
This base implementation is still very barebones but it defines the path
for how exporting will work (at least when embedding the .NET runtime).
Many manual steps are still needed, which should be automatized in the
future. For example, in addition to the API assemblies, now you also
need to copy the GodotPlugins assembly to each game project.